Suppr超能文献

基于深度学习的多参数体部 MRI 序列分类。

Classification of Multi-Parametric Body MRI Series Using Deep Learning.

出版信息

IEEE J Biomed Health Inform. 2024 Nov;28(11):6791-6802. doi: 10.1109/JBHI.2024.3448373. Epub 2024 Nov 6.

Abstract

Multi-parametric magnetic resonance imaging (mpMRI) exams have various series types acquired with different imaging protocols. The DICOM headers of these series often have incorrect information due to the sheer diversity of protocols and occasional technologist errors. To address this, we present a deep learning-based classification model to classify 8 different body mpMRI series types so that radiologists read the exams efficiently. Using mpMRI data from various institutions, multiple deep learning-based classifiers of ResNet, EfficientNet, and DenseNet are trained to classify 8 different MRI series, and their performance is compared. Then, the best-performing classifier is identified, and its classification capability under the setting of different training data quantities is studied. Also, the model is evaluated on the out-of-training-distribution datasets. Moreover, the model is trained using mpMRI exams obtained from different scanners in two training strategies, and its performance is tested. Experimental results show that the DenseNet-121 model achieves the highest F1-score and accuracy of 0.966 and 0.972 over the other classification models with p-value 0.05. The model shows greater than 0.95 accuracy when trained with over 729 studies of the training data, whose performance improves as the training data quantities grow larger. On the external data with the DLDS and CPTAC-UCEC datasets, the model yields 0.872 and 0.810 accuracy for each. These results indicate that in both the internal and external datasets, the DenseNet-121 model attains high accuracy for the task of classifying 8 body MRI series types.

摘要

多参数磁共振成像(mpMRI)检查有多种不同成像方案采集的系列类型。由于协议的多样性和偶尔的技术人员错误,这些系列的 DICOM 标头通常存在不正确的信息。为了解决这个问题,我们提出了一种基于深度学习的分类模型,以对 8 种不同的身体 mpMRI 系列类型进行分类,以便放射科医生进行有效的阅读。使用来自不同机构的 mpMRI 数据,训练了基于 ResNet、EfficientNet 和 DenseNet 的多个深度学习分类器,以对 8 种不同的 MRI 系列进行分类,并比较了它们的性能。然后,确定了性能最佳的分类器,并研究了其在不同训练数据量下的分类能力。此外,还在离训练分布数据集上评估了模型。此外,使用来自不同扫描仪的 mpMRI 检查在两种训练策略下对模型进行了训练,并测试了其性能。实验结果表明,DenseNet-121 模型在 F1 得分和准确率方面均优于其他分类模型,F1 得分和准确率分别为 0.966 和 0.972,p 值为 0.05。当使用超过 729 项研究的训练数据进行训练时,模型的准确率大于 0.95,并且随着训练数据量的增加,模型的性能也会提高。在外部数据的 DLDS 和 CPTAC-UCEC 数据集上,模型的准确率分别为 0.872 和 0.810。这些结果表明,在内部和外部数据集上,DenseNet-121 模型在分类 8 种身体 MRI 系列类型的任务中都具有很高的准确率。

相似文献

1
Classification of Multi-Parametric Body MRI Series Using Deep Learning.基于深度学习的多参数体部 MRI 序列分类。
IEEE J Biomed Health Inform. 2024 Nov;28(11):6791-6802. doi: 10.1109/JBHI.2024.3448373. Epub 2024 Nov 6.
5
Integrating multi-source data for skin burn classification using deep learning.利用深度学习整合多源数据进行皮肤烧伤分类
Comput Biol Med. 2025 Sep;195:110556. doi: 10.1016/j.compbiomed.2025.110556. Epub 2025 Jun 24.

本文引用的文献

3
Universal detection and segmentation of lymph nodes in multi-parametric MRI.多参数 MRI 中淋巴结的通用检测与分割。
Int J Comput Assist Radiol Surg. 2024 Jan;19(1):163-170. doi: 10.1007/s11548-023-02954-7. Epub 2023 Jun 16.
6
Universal lymph node detection in T2 MRI using neural networks.使用神经网络进行 T2 MRI 下的通用淋巴结检测。
Int J Comput Assist Radiol Surg. 2023 Feb;18(2):313-318. doi: 10.1007/s11548-022-02782-1. Epub 2022 Nov 4.
8
3D Pyramid Pooling Network for Abdominal MRI Series Classification.三维金字塔池化网络在腹部 MRI 序列分类中的应用。
IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):1688-1698. doi: 10.1109/TPAMI.2020.3033990. Epub 2022 Mar 4.
10
Does image normalization and intensity resolution impact texture classification?图像归一化和强度分辨率是否会影响纹理分类?
Comput Med Imaging Graph. 2020 Apr;81:101716. doi: 10.1016/j.compmedimag.2020.101716. Epub 2020 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验