Cisneros Sebastian, Abdel-Mageed Ali, Mosrati Jawaher, Bartling Stephan, Rockstroh Nils, Atia Hanan, Abed Hayder, Rabeah Jabor, Brückner Angelika
Leibniz-Institut für Katalyse, Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
iScience. 2022 Feb 8;25(3):103886. doi: 10.1016/j.isci.2022.103886. eCollection 2022 Mar 18.
Hydrogenation of CO is very attractive for transforming this greenhouse gas into valuable high energy density compounds. In this work, we developed a highly active and stable Ru/TiO catalyst for CO methanation prepared by a solgel method that revealed much higher activity in methanation of CO (ca. 4-14 times higher turnover frequencies at 140-210°C) than state-of-the-art Ru/TiO catalysts and a control sample prepared by wetness impregnation. This is attributed to a high concentration of O-vacancies, inherent to the solgel methodology, which play a dual role for 1) activation of CO and 2) transfer of electrons to interfacial Ru sites as evident from operando DRIFTS and EPR investigations. These results suggest that charge transfer from O-vacancies to interfacial Ru sites and subsequent electron donation from filled metal d-orbitals to antibonding orbitals of adsorbed CO are decisive factors in boosting the CO methanation activity.
将一氧化碳(CO)氢化以将这种温室气体转化为有价值的高能量密度化合物是非常有吸引力的。在这项工作中,我们通过溶胶 - 凝胶法制备了一种用于CO甲烷化的高活性和稳定的Ru/TiO催化剂,该催化剂在CO甲烷化反应中(在140 - 210°C时周转频率约高4 - 14倍)显示出比现有技术的Ru/TiO催化剂以及通过湿浸渍法制备的对照样品更高的活性。这归因于溶胶 - 凝胶方法固有的高浓度氧空位,从原位漫反射红外傅里叶变换光谱(operando DRIFTS)和电子顺磁共振(EPR)研究可以明显看出,这些氧空位对1)CO的活化和2)向界面Ru位点的电子转移起着双重作用。这些结果表明,从氧空位到界面Ru位点的电荷转移以及随后从填充的金属d轨道向吸附的CO的反键轨道的电子给予是提高CO甲烷化活性的决定性因素。