Suppr超能文献

捕获 CO 用不同来源的氧化铈和氧化铈-氧化锆纳米材料。

Capturing CO by ceria and ceria-zirconia nanomaterials of different origin.

机构信息

Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl. 11, 1113 Sofia, Bulgaria.

Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl. 107, 1113 Sofia, Bulgaria.

出版信息

Phys Chem Chem Phys. 2023 Jul 5;25(26):17154-17175. doi: 10.1039/d3cp00896g.

Abstract

Ceria and ceria-zirconia nanomaterials of different origin were studied in order to elucidate the role of their structural and textural characteristics in controlling the performance towards CO capture. Two commercial cerias and two home-prepared samples, CeO and CeO-ZrO (75% CeO) mixed oxide, were investigated. The samples were characterized by a number of analytical techniques including XRD, TEM, N-adsorption, XPS, H-TPR, Raman and FTIR spectroscopy. Static and dynamic CO adsorption experiments were applied to assess the CO capture performance. The type of surface species formed and their thermal stability were evaluated by FTIR spectroscopy and CO-TPD analysis. The two commercial ceria samples possessed similar structural and textural characteristics, formed the same types of carbonate-like surface species upon CO adsorption and, consequently, demonstrated almost identical CO capture performance under both static and dynamic conditions. The thermal stability of the adsorbed species increased in the order bidentate (B) carbonates, hydrogen carbonates (HC) and tridentate carbonates (T-III, T-II, T-I). Reduction of CeO increased the relative amount of the most strongly bonded T-I tridentate carbonates. Preadsorbed water led to hydroxylation and enhanced formation of hydrogen carbonates. Although the synthesized CeO sample had a higher surface area (by 30%) it showed a disadvantageous long mass transfer zone in the CO-adsorption breakthrough curves. Because of its complex pore structure, this sample probably experiences severe intraparticle CO diffusion resistance. Having the same surface area as the synthesized CeO, the mixed CeO-ZrO oxide exhibited the highest CO capture capacity of 136 μmol g under dynamic conditions. This was related to the highest concentration of CO adsorption sites (including defects) on this sample. The CeO-ZrO system showed the lowest sensitivity to the presence of water vapor in the gas stream due to the lack of dissociative water adsorption on this material.

摘要

为了阐明其结构和形貌特征在控制 CO 捕集性能方面的作用,研究了不同来源的铈和铈-锆纳米材料。考察了两种商业铈和两种自制样品,CeO 和 CeO-ZrO(75% CeO)混合氧化物。采用 XRD、TEM、N 吸附、XPS、H-TPR、拉曼和 FTIR 光谱等多种分析技术对样品进行了表征。采用静态和动态 CO 吸附实验评价 CO 捕集性能。通过 FTIR 光谱和 CO-TPD 分析评价了形成的表面物种类型及其热稳定性。两种商业铈样品具有相似的结构和形貌特征,在 CO 吸附时形成相同类型的碳酸盐类表面物种,因此在静态和动态条件下具有几乎相同的 CO 捕集性能。吸附物种的热稳定性顺序为双齿(B)碳酸盐、氢碳酸盐(HC)和三齿碳酸盐(T-III、T-II、T-I)。CeO 的还原增加了最强结合 T-I 三齿碳酸盐的相对量。预吸附水导致了羟化作用,并增强了氢碳酸盐的形成。尽管合成的 CeO 样品具有较高的比表面积(高 30%),但其在 CO 吸附突破曲线中表现出不利的长传质区。由于其复杂的孔结构,该样品可能经历严重的内扩散阻力。具有与合成的 CeO 相同的比表面积,CeO-ZrO 混合氧化物在动态条件下表现出最高的 CO 捕集容量为 136 μmol g。这与该样品上 CO 吸附位(包括缺陷)的最高浓度有关。由于该材料上不存在解离水吸附,CeO-ZrO 体系对气流中水蒸气的存在表现出最低的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验