Afanasyeva Arina, Nagao Chioko, Mizuguchi Kenji
Bioinformatics Project, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
Institute for Protein Research, Osaka University, Osaka, Japan.
Adv Appl Bioinform Chem. 2020 Dec 2;13:27-40. doi: 10.2147/AABC.S278900. eCollection 2020.
Despite recent advances in the drug discovery field, developing selective kinase inhibitors remains a complicated issue for a number of reasons, one of which is that there are striking structural similarities in the ATP-binding pockets of kinases.
To address this problem, we have designed a machine learning model utilizing various structure-based and energy-based descriptors to better characterize protein-ligand interactions.
In this work, we use a dataset of 104 human kinases with available PDB structures and experimental activity data against 1202 small-molecule compounds from the PubChem BioAssay dataset "Navigating the Kinome". We propose structure-based interaction descriptors to build activity predicting machine learning model.
We report a ligand-oriented computational method for accurate kinase target prioritizing. Our method shows high accuracy compared to similar structure-based activity prediction methods, and more importantly shows the same prediction accuracy when tested on the special set of structurally remote compounds, showing that it is unbiased to ligand structural similarity in the training set data. We hope that our approach will be useful for the development of novel highly selective kinase inhibitors.
尽管药物发现领域最近取得了进展,但由于多种原因,开发选择性激酶抑制剂仍然是一个复杂的问题,其中之一是激酶的ATP结合口袋在结构上有显著的相似性。
为了解决这个问题,我们设计了一种机器学习模型,利用各种基于结构和基于能量的描述符来更好地表征蛋白质-配体相互作用。
在这项工作中,我们使用了一个包含104种具有可用PDB结构的人类激酶的数据集,以及针对来自PubChem生物测定数据集“探索激酶组”的1202种小分子化合物的实验活性数据。我们提出基于结构的相互作用描述符来构建活性预测机器学习模型。
我们报告了一种用于准确进行激酶靶点优先级排序的面向配体的计算方法。与类似的基于结构的活性预测方法相比,我们的方法显示出高准确性,更重要的是,在对一组结构上距离较远的化合物进行测试时,显示出相同的预测准确性,这表明它对训练集数据中的配体结构相似性没有偏差。我们希望我们的方法将有助于新型高选择性激酶抑制剂的开发。