Suppr超能文献

预测台湾男性骨质疏松症的简易自我评估工具。

Simple Self-Assessment Tool to Predict Osteoporosis in Taiwanese Men.

作者信息

Liu Dung-Huan, Hsu Chung-Yuan, Wu Pei-Ching, Chen Ying-Chou, Chen You-Yin, Chen Jia-Feng, Yu Shan-Fu, Cheng Tien-Tsai

机构信息

Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan.

Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

出版信息

Front Med (Lausanne). 2021 Nov 16;8:713535. doi: 10.3389/fmed.2021.713535. eCollection 2021.

Abstract

Although the self-assessment tools for predicting osteoporosis are convenient for clinicians, they are not commonly used among men. We developed the Male Osteoporosis Self-Assessment Tool for Taiwan (MOSTAi) to identify the patients at risk of osteoporosis. All the participants completed a questionnaire on the clinical risk factors for the fracture risk assessment tool. The risk index was calculated by the multivariate regression model through the item reduction method. The receiver operating characteristic (ROC) curve was used to analyze its sensitivity and specificity, and MOSTAi was developed and validated. A total of 2,290 men participated in the bone mineral density (BMD) survey. We chose a model that considered two variables (age and weight). The area under the curve (AUC) of the model was 0.700. The formula for the MOSTAi index is as follows: 0.3 × (weight in kilograms) - 0.1 × (years). We chose 11 as the appropriate cut-off value for the MOSTAi index to identify the subjects at the risk of osteoporosis. The MOSTAi is a simple, intuitive, and country-specific tool that can predict the risk of osteoporosis in Taiwanese men. Due to different demographic characteristics, each region of the world can develop its own model to identify patients with osteoporosis more effectively.

摘要

尽管用于预测骨质疏松症的自我评估工具对临床医生来说很方便,但在男性中并不常用。我们开发了台湾男性骨质疏松症自我评估工具(MOSTAi)来识别有骨质疏松症风险的患者。所有参与者都完成了一份关于骨折风险评估工具临床风险因素的问卷。风险指数通过多元回归模型采用项目缩减法计算得出。使用受试者工作特征(ROC)曲线分析其敏感性和特异性,MOSTAi得以开发和验证。共有2290名男性参与了骨密度(BMD)调查。我们选择了一个考虑两个变量(年龄和体重)的模型。该模型的曲线下面积(AUC)为0.700。MOSTAi指数的公式如下:0.3×(体重,单位为千克)-0.1×(年龄)。我们选择11作为MOSTAi指数的合适临界值,以识别有骨质疏松症风险的受试者。MOSTAi是一个简单、直观且针对特定国家的工具,能够预测台湾男性患骨质疏松症的风险。由于人口特征不同,世界上每个地区都可以开发自己的模型,以更有效地识别骨质疏松症患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fe/8635042/d74ffce70226/fmed-08-713535-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验