Suppr超能文献

脓毒症的快速检测:生物标志物传感平台的最新进展

Rapid Detection of Sepsis: Recent Advances in Biomarker Sensing Platforms.

作者信息

Durkin Tyler J, Barua Baishali, Savagatrup Suchol

机构信息

Department of Chemical and Environmental Engineering, University of Arizona, 1133 East James E. Rogers Way, Tucson, Arizona 85721, United States.

出版信息

ACS Omega. 2021 Nov 18;6(47):31390-31395. doi: 10.1021/acsomega.1c04788. eCollection 2021 Nov 30.

Abstract

Sepsis is a major cause of mortality among hospitalized patients worldwide. Rapid diagnosis is critical as early treatments have been demonstrated to improve survival. Despite the importance of early detection, current technologies and clinical methods are often insufficient due to their lack of the necessary speed, selectivity, or sensitivity. The development of rapid sensing platforms that target sepsis-related biomarkers could significantly improve the outcomes of patients. This Mini-Review focuses on the recent advances in rapid diagnosis of soluble biomarkers in blood with the emphasis on different configurations of point-of-care (POC) instruments. Specifically, it first describes the commonly targeted biomarkers and the mechanisms by which they are detected. Then, it highlights the recently developed sensors that aim to reduce the total time of diagnosis without sacrificing selectivity and limit of detection. These sensors are categorized based on their distinct sensing and transduction mechanisms. Finally, it concludes with a brief outlook over future developments of multiplexed sensors.

摘要

脓毒症是全球住院患者死亡的主要原因。快速诊断至关重要,因为早期治疗已被证明可提高生存率。尽管早期检测很重要,但由于当前技术和临床方法缺乏必要的速度、选择性或灵敏度,往往并不充分。针对脓毒症相关生物标志物的快速传感平台的开发可显著改善患者的治疗结果。本综述聚焦于血液中可溶性生物标志物快速诊断的最新进展,重点关注即时检测(POC)仪器的不同配置。具体而言,它首先描述了常见的目标生物标志物及其检测机制。然后,它强调了最近开发的旨在在不牺牲选择性和检测限的情况下减少诊断总时间的传感器。这些传感器根据其独特的传感和转导机制进行分类。最后,它对多路复用传感器的未来发展进行了简要展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4e5/8637593/ece8827ef0cc/ao1c04788_0001.jpg

相似文献

1
Rapid Detection of Sepsis: Recent Advances in Biomarker Sensing Platforms.
ACS Omega. 2021 Nov 18;6(47):31390-31395. doi: 10.1021/acsomega.1c04788. eCollection 2021 Nov 30.
2
Point-of-critical-care diagnostics for sepsis enabled by multiplexed micro and nanosensing technologies.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Sep;13(5):e1701. doi: 10.1002/wnan.1701. Epub 2021 Mar 1.
3
Recent advances in biosensors for diagnosis and detection of sepsis: A comprehensive review.
Biosens Bioelectron. 2019 Jan 15;124-125:205-215. doi: 10.1016/j.bios.2018.10.034. Epub 2018 Oct 19.
4
Neonatal sepsis at point of care.
Clin Chim Acta. 2021 Oct;521:45-58. doi: 10.1016/j.cca.2021.06.021. Epub 2021 Jun 18.
5
Advances in point-of-care technologies for molecular diagnostics.
Biosens Bioelectron. 2017 Dec 15;98:494-506. doi: 10.1016/j.bios.2017.07.024. Epub 2017 Jul 11.
6
Enabling Multiplexed Electrochemical Detection of Biomarkers with High Sensitivity in Complex Biological Samples.
Acc Chem Res. 2021 Sep 21;54(18):3529-3539. doi: 10.1021/acs.accounts.1c00382. Epub 2021 Sep 3.
7
Recent advances in molecular recognition based on nanoengineered platforms.
Acc Chem Res. 2014 Apr 15;47(4):979-88. doi: 10.1021/ar400162w. Epub 2014 Jan 27.
8
Advances in point-of-care diagnostic devices in cancers.
Analyst. 2018 Mar 12;143(6):1326-1348. doi: 10.1039/c7an01771e.
9
Sepsis Care Pathway 2019.
Qatar Med J. 2019 Nov 7;2019(2):4. doi: 10.5339/qmj.2019.qccc.4. eCollection 2019.
10
Sensing Biomarkers with Plasmonics.
Anal Chem. 2020 Jun 2;92(11):7373-7381. doi: 10.1021/acs.analchem.0c00711. Epub 2020 May 19.

引用本文的文献

1
The use of biomarkers testing in Emergency Department.
J Crit Care Med (Targu Mures). 2025 Apr 30;11(2):164-172. doi: 10.2478/jccm-2024-0041. eCollection 2025 Apr.
4
Applications of peptides in nanosystems for diagnosing and managing bacterial sepsis.
J Biomed Sci. 2024 Apr 19;31(1):40. doi: 10.1186/s12929-024-01029-2.
6
Electrochemical point-of-care devices for the diagnosis of sepsis.
Curr Opin Electrochem. 2023 Jun;39. doi: 10.1016/j.coelec.2023.101300. Epub 2023 Apr 14.
7
Pilot Biomarker Analysis and Decision Tree Algorithm Modeling of Patients with Chronic Subdural Hematomas.
Neurotrauma Rep. 2023 Mar 24;4(1):184-196. doi: 10.1089/neur.2022.0062. eCollection 2023.
8
Design and Preparation of Sensing Surfaces for Capacitive Biodetection.
Biosensors (Basel). 2022 Dec 23;13(1):17. doi: 10.3390/bios13010017.
10
Nanomaterials for IoT Sensing Platforms and Point-of-Care Applications in South Korea.
Sensors (Basel). 2022 Jan 13;22(2):610. doi: 10.3390/s22020610.

本文引用的文献

1
Microfluidics for sepsis early diagnosis and prognosis: a review of recent methods.
Analyst. 2021 Apr 7;146(7):2110-2125. doi: 10.1039/d0an02374d. Epub 2021 Mar 10.
2
Point-of-critical-care diagnostics for sepsis enabled by multiplexed micro and nanosensing technologies.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Sep;13(5):e1701. doi: 10.1002/wnan.1701. Epub 2021 Mar 1.
4
Biomarkers of sepsis: time for a reappraisal.
Crit Care. 2020 Jun 5;24(1):287. doi: 10.1186/s13054-020-02993-5.
5
Multifunctional motion-to-color janus transducers for the rapid detection of sepsis biomarkers in whole blood.
Biosens Bioelectron. 2019 Sep 1;140:111346. doi: 10.1016/j.bios.2019.111346. Epub 2019 May 25.
6
Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time.
Biosens Bioelectron. 2019 Feb 1;126:806-814. doi: 10.1016/j.bios.2018.11.053. Epub 2018 Dec 7.
7
Recent advances in biosensors for diagnosis and detection of sepsis: A comprehensive review.
Biosens Bioelectron. 2019 Jan 15;124-125:205-215. doi: 10.1016/j.bios.2018.10.034. Epub 2018 Oct 19.
8
Epidemiology and Costs of Sepsis in the United States-An Analysis Based on Timing of Diagnosis and Severity Level.
Crit Care Med. 2018 Dec;46(12):1889-1897. doi: 10.1097/CCM.0000000000003342.
9
A microfluidic biochip platform for electrical quantification of proteins.
Lab Chip. 2018 May 15;18(10):1461-1470. doi: 10.1039/c8lc00033f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验