Suppr超能文献

用于数据驱动反馈和智能行动建议以支持学生自我调节的可解释人工智能。

Explainable AI for Data-Driven Feedback and Intelligent Action Recommendations to Support Students Self-Regulation.

作者信息

Afzaal Muhammad, Nouri Jalal, Zia Aayesha, Papapetrou Panagiotis, Fors Uno, Wu Yongchao, Li Xiu, Weegar Rebecka

机构信息

Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden.

出版信息

Front Artif Intell. 2021 Nov 12;4:723447. doi: 10.3389/frai.2021.723447. eCollection 2021.

Abstract

Formative feedback has long been recognised as an effective tool for student learning, and researchers have investigated the subject for decades. However, the actual implementation of formative feedback practices is associated with significant challenges because it is highly time-consuming for teachers to analyse students' behaviours and to formulate and deliver effective feedback and action recommendations to support students' regulation of learning. This paper proposes a novel approach that employs learning analytics techniques combined with explainable machine learning to provide automatic and intelligent feedback and action recommendations that support student's self-regulation in a data-driven manner, aiming to improve their performance in courses. Prior studies within the field of learning analytics have predicted students' performance and have used the prediction status as feedback without explaining the reasons behind the prediction. Our proposed method, which has been developed based on LMS data from a university course, extends this approach by explaining the root causes of the predictions and by automatically providing data-driven intelligent recommendations for action. Based on the proposed explainable machine learning-based approach, a dashboard that provides data-driven feedback and intelligent course action recommendations to students is developed, tested and evaluated. Based on such an evaluation, we identify and discuss the utility and limitations of the developed dashboard. According to the findings of the conducted evaluation, the dashboard improved students' learning outcomes, assisted them in self-regulation and had a positive effect on their motivation.

摘要

形成性反馈长期以来一直被认为是促进学生学习的有效工具,研究人员对此主题的研究已有数十年。然而,形成性反馈实践的实际实施面临重大挑战,因为教师分析学生行为、制定并提供有效的反馈及行动建议以支持学生的学习调节非常耗时。本文提出了一种新颖的方法,该方法采用学习分析技术与可解释机器学习相结合,以数据驱动的方式提供支持学生自我调节的自动且智能的反馈及行动建议,旨在提高他们在课程中的表现。学习分析领域的先前研究预测了学生的表现,并将预测结果用作反馈,但未解释预测背后的原因。我们基于某大学课程的学习管理系统(LMS)数据开发的方法,通过解释预测的根本原因并自动提供数据驱动的智能行动建议,扩展了这种方法。基于所提出的基于可解释机器学习的方法,开发、测试并评估了一个向学生提供数据驱动反馈和智能课程行动建议的仪表板。基于这样的评估,我们识别并讨论了所开发仪表板的效用和局限性。根据所进行评估的结果,该仪表板改善了学生的学习成果,帮助他们进行自我调节,并对他们的学习动机产生了积极影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/593c/8636130/7d18f711deba/frai-04-723447-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验