Suppr超能文献

用于小分子的深度神经网络势基准研究。

Benchmark study on deep neural network potentials for small organic molecules.

机构信息

Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India.

出版信息

J Comput Chem. 2022 Feb 15;43(5):308-318. doi: 10.1002/jcc.26790. Epub 2021 Dec 6.

Abstract

There has been tremendous advancement in machine learning (ML) applications in computational chemistry, particularly in neural network potentials (NNP). NNPs can approximate potential energy surface (PES) as a high dimensional function by learning from existing reference data, thereby circumventing the need to solve the electronic Schrödinger equation explicitly. As a result, ML accelerates chemical space exploration and property prediction compared to quantum mechanical methods. Novel ML methods have the potential to provide efficient means for predicting the properties of molecules. However, this potential has been limited by the lack of standard comparative evaluations. In this work, we compare four selected models, that is, ANI, PhysNet, SchNet, and BAND-NN, developed to represent the PES of small organic molecules. We evaluate these models for their accuracy and transferability on two different test sets (i) Small organic molecules of up to eight-heavy atoms on which ANI and SchNet achieve root mean square error (RMSE) of 0.55 and 0.60 kcal/mol, respectively. (ii) On random selection of molecules from the GDB-11 database with 10-heavy atoms, ANI achieves RMSE of 1.17 kcal/mol and SchNet achieves RMSE of 1.89 kcal/mol. We examine their ability to produce smooth meaningful surface by performing PES scans for bond stretch, angle bend, and dihedral rotations on relatively large molecules to assess their possible application in molecular dynamics simulations. We also evaluate their performance for yielding minimum energy structures via geometry optimization using various minimization algorithms. All these models were also able to accurately differentiate different isomers of the same empirical formula . ANI and PhysNet achieve an RMSE of 0.29 and 0.52 kcal/mol, respectively, on isomers.

摘要

机器学习(ML)在计算化学中的应用取得了巨大进展,特别是在神经网络势(NNP)方面。NNP 可以通过从现有参考数据中学习来近似高维函数的势能面(PES),从而避免了明确求解电子薛定谔方程的需要。因此,与量子力学方法相比,ML 加速了化学空间的探索和性质预测。新的 ML 方法有可能为预测分子性质提供有效的手段。然而,这种潜力受到缺乏标准比较评估的限制。在这项工作中,我们比较了四个选定的模型,即 ANI、PhysNet、SchNet 和 BAND-NN,这些模型旨在表示小分子的 PES。我们评估了这些模型在两个不同测试集上的准确性和可转移性:(i)最多 8 个重原子的小分子,ANI 和 SchNet 的均方根误差(RMSE)分别达到 0.55 和 0.60 kcal/mol。(ii)在 GDB-11 数据库中随机选择的 10 个重原子分子,ANI 的 RMSE 为 1.17 kcal/mol,SchNet 的 RMSE 为 1.89 kcal/mol。我们通过对相对较大分子的键拉伸、角度弯曲和二面角旋转进行 PES 扫描,检查它们产生平滑有意义表面的能力,以评估它们在分子动力学模拟中的可能应用。我们还评估了它们通过使用各种最小化算法进行几何优化来生成最低能量结构的性能。所有这些模型都能够准确地区分相同经验公式的不同异构体。ANI 和 PhysNet 在异构体上的 RMSE 分别达到 0.29 和 0.52 kcal/mol。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验