Suppr超能文献

机器学习力场在重现柔性分子势能面方面面临的挑战。

Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules.

机构信息

Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.

出版信息

J Chem Phys. 2021 Mar 7;154(9):094119. doi: 10.1063/5.0038516.

Abstract

Dynamics of flexible molecules are often determined by an interplay between local chemical bond fluctuations and conformational changes driven by long-range electrostatics and van der Waals interactions. This interplay between interactions yields complex potential-energy surfaces (PESs) with multiple minima and transition paths between them. In this work, we assess the performance of the state-of-the-art Machine Learning (ML) models, namely, sGDML, SchNet, Gaussian Approximation Potentials/Smooth Overlap of Atomic Positions (GAPs/SOAPs), and Behler-Parrinello neural networks, for reproducing such PESs, while using limited amounts of reference data. As a benchmark, we use the cis to trans thermal relaxation in an azobenzene molecule, where at least three different transition mechanisms should be considered. Although GAP/SOAP, SchNet, and sGDML models can globally achieve a chemical accuracy of 1 kcal mol with fewer than 1000 training points, predictions greatly depend on the ML method used and on the local region of the PES being sampled. Within a given ML method, large differences can be found between predictions of close-to-equilibrium and transition regions, as well as for different transition mechanisms. We identify key challenges that the ML models face mainly due to the intrinsic limitations of commonly used atom-based descriptors. All in all, our results suggest switching from learning the entire PES within a single model to using multiple local models with optimized descriptors, training sets, and architectures for different parts of the complex PES.

摘要

柔性分子的动力学通常由局部化学键波动和由长程静电和范德华相互作用驱动的构象变化之间的相互作用决定。这种相互作用产生了具有多个局部最小值和它们之间的过渡路径的复杂势能表面(PES)。在这项工作中,我们评估了最先进的机器学习(ML)模型的性能,即 sGDML、SchNet、高斯近似势能/原子位置平滑重叠(GAPs/SOAPs)和 Behler-Parrinello 神经网络,用于在使用有限数量的参考数据的情况下重现这些 PES。作为基准,我们使用偶氮苯分子中的顺式到反式热弛豫,其中至少应该考虑三种不同的跃迁机制。尽管 GAP/SOAP、SchNet 和 sGDML 模型可以全局达到 1 kcal mol 的化学精度,只需少于 1000 个训练点,但预测结果很大程度上取决于所使用的 ML 方法和正在采样的 PES 的局部区域。在给定的 ML 方法内,可以发现接近平衡和过渡区域的预测以及不同的跃迁机制之间存在很大差异。我们确定了 ML 模型面临的主要挑战,主要是由于常用基于原子的描述符的固有局限性。总的来说,我们的结果表明,从在单个模型中学习整个 PES 切换到使用具有优化描述符、训练集和不同复杂 PES 部分的架构的多个局部模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验