Kröger Julia, Podjaski Filip, Savasci Gökcen, Moudrakovski Igor, Jiménez-Solano Alberto, Terban Maxwell W, Bette Sebastian, Duppel Viola, Joos Markus, Senocrate Alessandro, Dinnebier Robert, Ochsenfeld Christian, Lotsch Bettina V
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377, Munich, Germany.
Adv Mater. 2022 Feb;34(7):e2107061. doi: 10.1002/adma.202107061. Epub 2022 Jan 6.
Carbon nitrides are among the most studied materials for photocatalysis; however, limitations arise from inefficient charge separation and transport within the material. Here, this aspect is addressed in the 2D carbon nitride poly(heptazine imide) (PHI) by investigating the influence of various counterions, such as M = Li , Na , K , Cs , Ba , NH , and tetramethyl ammonium, on the material's conductivity and photocatalytic activity. These ions in the PHI pores affect the stacking of the 2D layers, which further influences the predominantly ionic conductivity in M-PHI. Na-containing PHI outperforms the other M-PHIs in various relative humidity (RH) environments (0-42%RH) in terms of conductivity, likely due to pore-channel geometry and size of the (hydrated) ion. With increasing RH, the ionic conductivity increases by 4-5 orders of magnitude (for Na-PHI up to 10 S cm at 42%RH). At the same time, the highest photocatalytic hydrogen evolution rate is observed for Na-PHI, which is mirrored by increased photogenerated charge-carrier lifetimes, pointing to efficient charge-carrier stabilization by, e.g., mobile ions. These results indicate that also ionic conductivity is an important parameter that can influence the photocatalytic activity. Besides, RH-dependent ionic conductivity is of high interest for separators, membranes, or sensors.
碳氮化物是光催化领域研究最多的材料之一;然而,材料内部电荷分离和传输效率低下导致了其局限性。在此,通过研究各种抗衡离子(如M = Li⁺、Na⁺、K⁺、Cs⁺、Ba²⁺、NH₄⁺和四甲基铵)对二维碳氮化物聚(七嗪酰亚胺)(PHI)材料电导率和光催化活性的影响,解决了这一问题。PHI孔隙中的这些离子会影响二维层的堆积,进而影响M-PHI中主要的离子电导率。在各种相对湿度(RH)环境(0-42%RH)下,含钠的PHI在电导率方面优于其他M-PHI,这可能是由于(水合)离子的孔道几何形状和尺寸所致。随着RH的增加,离子电导率增加4-5个数量级(对于钠-PHI,在42%RH时高达10 S cm⁻¹)。同时,钠-PHI的光催化析氢速率最高,光生电荷载流子寿命的增加反映了这一点,这表明例如移动离子可实现有效的电荷载流子稳定。这些结果表明,离子电导率也是一个可以影响光催化活性的重要参数。此外,依赖于RH的离子电导率对于隔膜、膜或传感器具有很高的研究价值。