Suppr超能文献

数据集成揭示了一种受威胁滨鸟繁殖栖息地利用的动态和系统模式。

Data integration reveals dynamic and systematic patterns of breeding habitat use by a threatened shorebird.

机构信息

U.S. Geological Survey, Northern Prairie Wildlife Research Center, 8711 37th St SE, Jamestown, ND, 58401, USA.

出版信息

Sci Rep. 2023 Apr 13;13(1):6087. doi: 10.1038/s41598-023-32886-w.

Abstract

Incorporating species distributions into conservation planning has traditionally involved long-term representations of habitat use where temporal variation is averaged to reveal habitats that are most suitable across time. Advances in remote sensing and analytical tools have allowed for the integration of dynamic processes into species distribution modeling. Our objective was to develop a spatiotemporal model of breeding habitat use for a federally threatened shorebird (piping plover, Charadrius melodus). Piping plovers are an ideal candidate species for dynamic habitat models because they depend on habitat created and maintained by variable hydrological processes and disturbance. We integrated a 20-year (2000-2019) nesting dataset with volunteer-collected sightings (eBird) using point process modeling. Our analysis incorporated spatiotemporal autocorrelation, differential observation processes within data streams, and dynamic environmental covariates. We evaluated the transferability of this model in space and time and the contribution of the eBird dataset. eBird data provided more complete spatial coverage in our study system than nest monitoring data. Patterns of observed breeding density depended on both dynamic (e.g., surface water levels) and long-term (e.g., proximity to permanent wetland basins) environmental processes. Our study provides a framework for quantifying dynamic spatiotemporal patterns of breeding density. This assessment can be iteratively updated with additional data to improve conservation and management efforts, because reducing temporal variability to average patterns of use may cause a loss in precision for such actions.

摘要

将物种分布纳入保护规划传统上涉及对栖息地利用的长期表示,其中时间变化被平均化以揭示在整个时间内最适合的栖息地。遥感和分析工具的进步使得将动态过程纳入物种分布模型成为可能。我们的目标是为一种受联邦威胁的涉禽(斑胸滨鹬,Charadrius melodus)开发一个繁殖栖息地利用的时空模型。斑胸滨鹬是动态栖息地模型的理想候选物种,因为它们依赖于由可变水文过程和干扰形成和维持的栖息地。我们使用点过程建模将 20 年(2000-2019 年)的筑巢数据集与志愿者收集的目击数据(eBird)整合在一起。我们的分析纳入了时空自相关、数据流内的差分观测过程以及动态环境协变量。我们评估了该模型在空间和时间上的可转移性以及 eBird 数据集的贡献。在我们的研究系统中,eBird 数据比巢监测数据提供了更完整的空间覆盖范围。观察到的繁殖密度模式取决于动态(例如,地表水水位)和长期(例如,靠近永久性湿地盆地)环境过程。我们的研究为量化繁殖密度的动态时空模式提供了一个框架。这种评估可以通过附加数据进行迭代更新,以改善保护和管理工作,因为减少时间变化以平均使用模式可能会导致此类行动的精度损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3726/10102276/c1dc26e8b975/41598_2023_32886_Fig1_HTML.jpg

相似文献

引用本文的文献

本文引用的文献

6
Data Integration for Large-Scale Models of Species Distributions.物种分布大尺度模型的数据集成。
Trends Ecol Evol. 2020 Jan;35(1):56-67. doi: 10.1016/j.tree.2019.08.006. Epub 2019 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验