Department of Bioengineering, University of California-San Diego, La Jolla, California 92093, United States.
ACS Nano. 2021 Dec 28;15(12):20504-20516. doi: 10.1021/acsnano.1c09064. Epub 2021 Dec 6.
Traumatic brain injury (TBI) is a critical public health concern and major contributor to death and long-term disability. After the initial trauma, a sustained secondary injury involving a complex continuum of pathophysiology unfolds, ultimately leading to the destruction of nervous tissue. One disease hallmark of TBI is ectopic protease activity, which can mediate cell death, extracellular matrix breakdown, and inflammation. We previously engineered a fluorogenic activity-based nanosensor for TBI (TBI-ABN) that passively accumulates in the injured brain across the disrupted vasculature and generates fluorescent signal in response to calpain-1 cleavage, thus enabling visualization of TBI-associated calpain-1 protease activity. In this work, we hypothesized that actively targeting the extracellular matrix (ECM) of the injured brain would improve nanosensor accumulation in the injured brain beyond passive delivery alone and lead to increased nanosensor activation. We evaluated several peptides that bind exposed/enriched ECM constituents in the brain and discovered that nanomaterials modified with peptides that target hyaluronic acid (HA) displayed widespread distribution across the injury lesion, in particular colocalizing with perilesional and hippocampal neurons. Modifying TBI-ABN with HA-targeting peptide led to increases in activation in a ligand-valency-dependent manner, up to 6.6-fold in the injured cortex compared to a nontargeted nanosensor. This robust nanosensor activation enabled 3D visualization of injury-specific protease activity in a cleared and intact brain. In our work, we establish that targeting brain ECM with peptide ligands can be leveraged to improve the distribution and function of a bioresponsive imaging nanomaterial.
创伤性脑损伤 (TBI) 是一个严重的公共卫生问题,也是导致死亡和长期残疾的主要原因。在初始创伤后,涉及复杂病理生理学连续体的持续继发性损伤展开,最终导致神经组织破坏。TBI 的一个疾病标志是异位蛋白酶活性,它可以介导细胞死亡、细胞外基质分解和炎症。我们之前设计了一种用于 TBI 的荧光活性纳米传感器 (TBI-ABN),它可以通过受损的血管被动积累在受伤的大脑中,并对钙蛋白酶-1切割产生荧光信号,从而能够可视化与 TBI 相关的钙蛋白酶-1蛋白酶活性。在这项工作中,我们假设主动靶向受伤大脑的细胞外基质 (ECM) 将改善纳米传感器在受伤大脑中的积累,超过单纯的被动传递,并导致纳米传感器的激活增加。我们评估了几种与大脑中暴露/富集的 ECM 成分结合的肽,发现靶向透明质酸 (HA) 的肽修饰的纳米材料在损伤病变中广泛分布,特别是与损伤周围和海马神经元共定位。用靶向 HA 的肽修饰 TBI-ABN 以配体价依赖性的方式导致激活增加,与非靶向纳米传感器相比,受伤皮质中的激活增加了 6.6 倍。这种强大的纳米传感器激活使我们能够在清除和完整的大脑中可视化损伤特异性蛋白酶活性。在我们的工作中,我们确定了用肽配体靶向大脑 ECM 可以提高生物响应成像纳米材料的分布和功能。