Suppr超能文献

通过网络分析估计双相情感障碍的症状结构:能量失调作为核心症状。

Estimating the symptom structure of bipolar disorder via network analysis: Energy dysregulation as a central symptom.

机构信息

Department of Psychology, Harvard University.

Massachusetts General Hospital.

出版信息

J Psychopathol Clin Sci. 2022 Jan;131(1):86-97. doi: 10.1037/abn0000715. Epub 2021 Dec 6.

Abstract

Using network analysis, we estimated the structure of relations among manic and depressive symptoms, respectively, in 486 patients (59% women; age: M = 37, SD = 12.1) with bipolar disorder prior to their entering a clinical trial. We computed three types of networks: (a) Gaussian graphical models (GGMs) depicting regularized partial correlations, (b) regression-based GGMs depicting nonregularized partial correlations, and (c) directed acyclic graphs (DAGs) via a Bayesian hill-climbing algorithm. Low energy and elevated energy were consistently identified as central nodes in the GGMs and as key parent nodes in the DAGs. Across analyses, pessimism about the future and depressed mood were the symptoms most strongly associated with suicidal thoughts and behavior. These exploratory analyses provide rich information about how bipolar disorder symptoms relate to one another, thereby furnishing a foundation for investigating how bipolar disorder symptoms may operate as a causal system. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

使用网络分析,我们在进入临床试验之前,对 486 名(女性占 59%;年龄:M=37,SD=12.1)双相障碍患者的躁狂和抑郁症状分别进行了关系结构估计。我们计算了三种类型的网络:(a)描绘正则化偏相关的高斯图形模型(GGM),(b)描绘非正则化偏相关的基于回归的 GGM,以及(c)通过贝叶斯爬山算法的有向无环图(DAG)。低能量和高能量在 GGM 中始终被确定为中心节点,在 DAG 中被确定为关键父节点。在所有分析中,对未来的悲观和抑郁情绪是与自杀念头和行为最相关的症状。这些探索性分析提供了有关双相障碍症状如何相互关联的丰富信息,从而为研究双相障碍症状如何作为因果系统运作提供了基础。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

相似文献

8
[Antipsychotics in bipolar disorders].[双相情感障碍中的抗精神病药物]
Encephale. 2004 Sep-Oct;30(5):417-24. doi: 10.1016/s0013-7006(04)95456-5.

引用本文的文献

本文引用的文献

1
The sum of all fears: Comparing networks based on symptom sum-scores.所有恐惧之和:基于症状总分比较网络。
Psychol Methods. 2022 Dec;27(6):1061-1068. doi: 10.1037/met0000418. Epub 2021 Dec 16.
2
Modeling psychopathology: From data models to formal theories.建模精神病理学:从数据模型到形式理论。
Psychol Methods. 2022 Dec;27(6):930-957. doi: 10.1037/met0000303. Epub 2021 Nov 4.
3
Networks of major depressive disorder: A systematic review.重度抑郁症的网络:系统综述。
Clin Psychol Rev. 2021 Apr;85:102000. doi: 10.1016/j.cpr.2021.102000. Epub 2021 Mar 1.
5
Network Analysis of Psychopathology: Controversies and Challenges.网络分析在精神病理学中的应用:争议与挑战。
Annu Rev Clin Psychol. 2021 May 7;17:31-53. doi: 10.1146/annurev-clinpsy-081219-092850. Epub 2020 Nov 23.
6
The Taboo Against Explicit Causal Inference in Nonexperimental Psychology.非实验心理学中对明确因果推论的禁忌。
Perspect Psychol Sci. 2020 Sep;15(5):1243-1255. doi: 10.1177/1745691620921521. Epub 2020 Jul 29.
10
What do centrality measures measure in psychological networks?中心度测度在心理网络中衡量什么?
J Abnorm Psychol. 2019 Nov;128(8):892-903. doi: 10.1037/abn0000446. Epub 2019 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验