Suppr超能文献

快速荧光寿命成像显示 TRPV4 通道促进缺血时神经元 Na 的失调。

Rapid Fluorescence Lifetime Imaging Reveals That TRPV4 Channels Promote Dysregulation of Neuronal Na in Ischemia.

机构信息

Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.

PicoQuant, 12489 Berlin, Germany.

出版信息

J Neurosci. 2022 Jan 26;42(4):552-566. doi: 10.1523/JNEUROSCI.0819-21.2021. Epub 2021 Dec 6.

Abstract

Fluorescence imaging is an indispensable method for analysis of diverse cellular and molecular processes, enabling, for example, detection of ions, second messengers, or metabolites. Intensity-based approaches, however, are prone to artifacts introduced by changes in fluorophore concentrations. This drawback can be overcome by fluorescence lifetime imaging (FLIM) based on time-correlated single-photon counting. FLIM often necessitates long photon collection times, resulting in strong temporal binning of dynamic processes. Recently, rapidFLIM was introduced, exploiting ultra-low dead-time photodetectors together with rapid electronics. Here, we demonstrate the applicability of rapidFLIM, combined with new and improved correction schemes, for spatiotemporal fluorescence lifetime imaging of low-emission fluorophores in a biological system. Using tissue slices of hippocampi of mice of either sex, loaded with the Na indicator ING2, we show that improved rapidFLIM enables quantitative, dynamic imaging of neuronal Na signals at a full-frame temporal resolution of 0.5 Hz. Induction of transient chemical ischemia resulted in unexpectedly large Na influx, accompanied by considerable cell swelling. Both Na loading and cell swelling were dampened on inhibition of TRPV4 channels. Together, rapidFLIM enabled the spatiotemporal visualization and quantification of neuronal Na transients at unprecedented speed and independent from changes in cell volume. Moreover, our experiments identified TRPV4 channels as hitherto unappreciated contributors to neuronal Na loading on metabolic failure, suggesting this pathway as a possible target to ameliorate excitotoxic damage. Finally, rapidFLIM will allow faster and more sensitive detection of a wide range of dynamic signals with other FLIM probes, most notably those with intrinsic low-photon emission. FLIM is an indispensable method for analysis of cellular processes. FLIM often necessitates long photon collection periods, requiring the sacrifice of temporal resolution at the expense of spatial information. Here, we demonstrate the applicability of the recently introduced rapidFLIM for quantitative, dynamic imaging with low-emission fluorophores in brain slices. RapidFLIM, combined with improved correction schemes, enabled intensity-independent recording of neuronal Na transients at unprecedented full-frame rates of 0.5 Hz. It also allowed quantitative imaging independent from changes in cell volume, revealing a surprisingly strong and hitherto uncovered contribution of TRPV4 channels to Na loading on energy failure. Collectively, our study thus provides a novel, unexpected insight into the mechanisms that are responsible for Na changes on energy depletion.

摘要

荧光成像是分析各种细胞和分子过程不可或缺的方法,例如,可用于检测离子、第二信使或代谢物。然而,基于强度的方法容易受到荧光团浓度变化引入的伪影的影响。这一缺点可以通过基于时间相关单光子计数的荧光寿命成像(FLIM)来克服。FLIM 通常需要长的光子采集时间,导致动态过程的强烈时间-bin 化。最近,引入了快速 FLIM,它利用超低死时间光电探测器和快速电子学。在这里,我们展示了快速 FLIM 的适用性,结合新的和改进的校正方案,用于在生物系统中对低发射荧光团进行时空荧光寿命成像。使用两性小鼠海马组织切片,加载 Na 指示剂 ING2,我们表明,改进的快速 FLIM 能够以 0.5 Hz 的全帧时间分辨率对神经元 Na 信号进行定量、动态成像。短暂的化学缺血诱导导致出乎意料的大 Na 流入,同时伴有相当大的细胞肿胀。TRPV4 通道的抑制均减弱了 Na 负载和细胞肿胀。总之,快速 FLIM 能够以前所未有的速度和独立于细胞体积变化来可视化和量化神经元 Na 瞬变。此外,我们的实验确定 TRPV4 通道是代谢衰竭时神经元 Na 加载的未被认识到的贡献者,表明该途径可能是改善兴奋性损伤的潜在靶点。最后,快速 FLIM 将允许使用其他 FLIM 探针更快、更敏感地检测广泛的动态信号,尤其是那些具有固有低光子发射的探针。FLIM 是分析细胞过程不可或缺的方法。FLIM 通常需要长的光子采集时间,需要牺牲时间分辨率来换取空间信息。在这里,我们展示了最近引入的快速 FLIM 在脑切片中对低发射荧光团进行定量、动态成像的适用性。快速 FLIM 与改进的校正方案相结合,以空前的 0.5 Hz 全帧速率实现了神经元 Na 瞬变的强度独立记录。它还允许进行独立于细胞体积变化的定量成像,揭示了 TRPV4 通道对能量衰竭时 Na 加载的出乎意料的强烈且迄今为止未被发现的贡献。总的来说,我们的研究为能量耗竭时 Na 变化的机制提供了一个新的、意想不到的见解。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验