Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany.
Department of Molecular Cell Biology, Amsterdam Institute of Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2114013118.
The treatment of infectious diseases caused by multidrug-resistant pathogens is a major clinical challenge of the 21st century. The membrane-embedded respiratory cytochrome -type oxygen reductase is a critical survival factor utilized by pathogenic bacteria during infection, proliferation and the transition from acute to chronic states. encodes for two cytochrome isoforms that are both involved in respiration under oxygen limited conditions. Mechanistic and structural differences between () and () operon encoded cytochrome variants have remained elusive in the past. Here, we demonstrate that cytochrome - catalyzes oxidation of benzoquinols while possessing additional specificity for naphthoquinones. Our data show that although menaquinol-1 (MK1) is not able to directly transfer electrons onto cytochrome from , it has a stimulatory effect on its oxygen reduction rate in the presence of ubiquinol-1. We further determined cryo-EM structures of cytochrome - to high resolution of 2.1 Å. Our structural insights confirm that the general architecture and substrate accessible pathways are conserved between the two oxidase isoforms, but two notable differences are apparent upon inspection: (i) does not contain a CydH-like subunit, thereby exposing heme to the membrane environment and (ii) the AppB subunit harbors a structural demethylmenaquinone-8 molecule instead of ubiquinone-8 as found in CydB of Our work completes the structural landscape of terminal respiratory oxygen reductases of and suggests that structural and functional properties of the respective oxidases are linked to quinol-pool dependent metabolic adaptations in .
治疗由多药耐药病原体引起的传染病是 21 世纪的主要临床挑战。膜嵌入呼吸细胞色素型氧还原酶是病原体在感染、增殖和从急性向慢性状态转变过程中利用的关键生存因素。 编码两种细胞色素同工酶,它们都参与氧气有限条件下的呼吸。在过去, ()和 ()操纵子编码的细胞色素变体之间的机制和结构差异仍然难以捉摸。在这里,我们证明细胞色素 - 催化苯醌醇的氧化,同时对萘醌具有额外的特异性。我们的数据表明,尽管menaquinol-1(MK1)不能直接将电子从 转移到细胞色素上,但它在 ubiquinol-1 的存在下对其氧还原速率具有刺激作用。我们进一步确定了细胞色素 - 的低温 EM 结构,分辨率高达 2.1 Å。我们的结构见解证实了两种 氧化酶同工酶的一般架构和底物可及途径是保守的,但在检查时出现了两个明显的差异:(i) 不包含 CydH 样亚基,从而使血红素 暴露于膜环境中,(ii) AppB 亚基含有结构去甲基menaquinol-8 分子,而不是 CydB 中的 ubiquinol-8。我们的工作完成了 末端呼吸氧还原酶的结构景观,并表明各自氧化酶的结构和功能特性与依赖于醌池的代谢适应有关。