Smith C E, Goldberg J M
Biol Cybern. 1986;54(1):41-51. doi: 10.1007/BF00337114.
A stochastic version of Kernell's (1968, 1972) model with cumulative afterhyperpolarization (AHP) was simulated. A characteristic of the model is that the AHP is the result of an increased potassium conductance (g K) that is time-dependent but not voltage-dependent. Quantal synaptic inputs are assumed to be the only source of interspike interval variability. The model reproduces many features of the steady-state discharge of peripheral vestibular afferents, provided that firing rates are higher than 40 spikes/s. Among the results accounted for are the interspike interval statistics occurring during natural stimulation, their alteration by externally applied galvanic currents and the increase in the interspike interval following an interposed shock. Empirical studies show that some vestibular afferents have a regular spacing of action potentials, others an irregular spacing (Goldberg and Fernández 1971b; Fernández and Goldberg 1976). Irregularly discharging afferents have a higher sensitivity to externally applied galvanic currents than do regular afferents (Goldberg et al. 1984). To explain the relation between galvanic sensitivity and discharge regularity requires the assumption that neurons differ in both their synaptic noise (sigma v) and the slopes of their postspike voltage trajectories (d mu v/dt). The more irregular the neuron's discharge at a given firing frequency, the greater is sigma v and the smaller is d mu v/dt. Of the two factors, d mu v/dt is estimated to be four times more influential in determining discharge regularity across the afferent population. The shortcomings of the model are considered, as are possible remedies. Our conclusions are compared to previous discussions of mechanisms responsible for differences in the discharge regularity of vestibular afferents.
对带有累积后超极化(AHP)的Kernell(1968年、1972年)模型的随机版本进行了模拟。该模型的一个特点是,AHP是钾电导(gK)增加的结果,钾电导随时间变化但不随电压变化。量子突触输入被认为是峰间期变异性的唯一来源。该模型再现了外周前庭传入神经稳态放电的许多特征,前提是放电频率高于40次/秒。所解释的结果包括自然刺激期间出现的峰间期统计数据、外部施加的电流对其的改变以及插入电击后峰间期的增加。实证研究表明,一些前庭传入神经的动作电位间距规则,另一些则不规则(Goldberg和Fernández,1971b;Fernández和Goldberg,1976)。不规则放电的传入神经比规则传入神经对外加电流的敏感性更高(Goldberg等人,1984)。为了解释电流敏感性与放电规律性之间的关系,需要假设神经元在突触噪声(sigma v)和峰后电压轨迹斜率(d mu v/dt)方面存在差异。在给定的放电频率下,神经元的放电越不规则,sigma v就越大,d mu v/dt就越小。在这两个因素中,估计d mu v/dt在决定整个传入神经群体的放电规律性方面影响力要大四倍。文中考虑了该模型的缺点以及可能的补救措施。我们的结论与之前关于前庭传入神经放电规律性差异的机制讨论进行了比较。