Zvaigzne Mariya, Samokhvalov Pavel, Gun'ko Yurii K, Nabiev Igor
Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.
School of Chemistry, Trinity College, the University of Dublin, Dublin 2, Ireland.
Nanoscale. 2021 Dec 16;13(48):20354-20373. doi: 10.1039/d1nr05977g.
The production of enantiopure chemicals is an essential part of modern chemical industry. Hence, the emergence of asymmetric catalysis led to dramatic changes in the procedures of chemical synthesis, and now it provides the most advantageous and economically executable solution for large-scale production of chiral chemicals. In recent years, nanostructures have emerged as potential materials for asymmetric synthesis. Indeed, on the one hand, nanomaterials offer great opportunities as catalysts in asymmetric catalysis, due to their tunable absorption, chirality, and unique energy transfer properties; on the other hand, the advantages of the larger surface area, increased number of unsaturated coordination centres, and more accessible active sites open prospects for catalyst encapsulation, partial or complete, in a nanoscale cavity, pore, pocket, or channel leading to alteration of the chemical reactivity through spatial confinement. This review focuses on anisotropic nanomaterials and considers the state-of-the-art progress in asymmetric synthesis catalysed by 1D, 2D and 3D nanostructures. The discussion comprises three main sections according to the nanostructure dimensionality. We analyze recent advances in materials and structure development, discuss the functional role of the nanomaterials in asymmetric synthesis, chirality, confinement effects, and reported enantioselectivity. Finally, the new opportunities and challenges of anisotropic 1D, 2D, and 3D nanomaterials in asymmetric synthesis, as well as the future prospects and current trends of the design and applications of these materials are analyzed in the Conclusions and outlook section.
对映体纯化学品的生产是现代化学工业的重要组成部分。因此,不对称催化的出现给化学合成程序带来了巨大变化,如今它为大规模生产手性化学品提供了最具优势且经济上可行的解决方案。近年来,纳米结构已成为不对称合成的潜在材料。一方面,纳米材料因其可调节的吸收、手性和独特的能量转移特性,在不对称催化中作为催化剂提供了巨大机遇;另一方面,较大的表面积、增加的不饱和配位中心数量以及更多可及的活性位点等优势,为将催化剂部分或完全封装在纳米级腔体、孔隙、口袋或通道中开辟了前景,这会通过空间限制改变化学反应活性。本综述聚焦于各向异性纳米材料,并探讨由一维、二维和三维纳米结构催化的不对称合成的最新进展。根据纳米结构的维度,讨论包括三个主要部分。我们分析了材料和结构发展方面的最新进展,讨论了纳米材料在不对称合成、手性、限制效应以及报道的对映选择性中的功能作用。最后,在结论与展望部分分析了各向异性一维、二维和三维纳米材料在不对称合成中的新机遇和挑战,以及这些材料设计与应用的未来前景和当前趋势。