Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Nano Lett. 2021 Dec 22;21(24):10244-10251. doi: 10.1021/acs.nanolett.1c03214. Epub 2021 Dec 7.
The use of molecules as active components to build nanometer-scale devices inspires emerging device concepts that employ the intrinsic functionality of molecules to address longstanding challenges facing nanoelectronics. Using molecules as controllable-length nanosprings, here we report the design and operation of a nanoelectromechanical (NEM) switch which overcomes the typical challenges of high actuation voltages and slow switching speeds for previous NEM technologies. Our NEM switches are hierarchically assembled using a molecular spacer layer sandwiched between atomically smooth electrodes, which defines a nanometer-scale electrode gap and can be electrostatically compressed to repeatedly modulate the tunneling current. The molecular layer and the top electrode structure serve as two degrees of design freedom with which to independently tailor static and dynamic device characteristics, enabling simultaneous low turn-on voltages (sub-3 V) and short switching delays (2 ns). This molecular platform with inherent nanoscale modularity provides a versatile strategy for engineering diverse high-performance and energy-efficient electromechanical devices.
利用分子作为活性成分来构建纳米级器件,激发了新兴的器件概念,这些概念利用分子的固有功能来解决纳米电子学面临的长期挑战。本文将分子用作可控制长度的纳米弹簧,设计并运行了一种纳米机电(NEM)开关,克服了先前 NEM 技术中存在的高致动电压和慢开关速度的典型挑战。我们的 NEM 开关采用分子间隔层在原子级平滑电极之间进行分层组装,该间隔层定义了纳米级电极间隙,并可通过静电压缩来重复调制隧穿电流。分子层和顶电极结构提供了两个自由度,可以独立地调整静态和动态器件特性,从而实现低导通电压(低于 3V)和短开关延迟(2ns)。这种具有固有纳米级模块化的分子平台为设计各种高性能和高能效的机电设备提供了一种通用策略。