Niroui Farnaz, Saravanapavanantham Mayuran, Han Jinchi, Patil Jatin J, Swager Timothy M, Lang Jeffrey H, Bulović Vladimir
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Nano Lett. 2021 Feb 24;21(4):1606-1612. doi: 10.1021/acs.nanolett.0c04043. Epub 2021 Feb 3.
Molecules can serve as ultimate building blocks for extreme nanoscale devices. This requires their precise integration into functional heterojunctions, most commonly in the form of metal-molecule-metal architectures. Structural damage and nonuniformities caused by current fabrication techniques, however, limit their effective incorporation. Here, we present a hybrid fabrication approach enabling uniform and active molecular junctions. A template-stripping technique is developed to form electrodes with sub-nanometer smooth surfaces. Combined with dielectrophoretic trapping of colloidal nanorods, uniform sub-5 nm junctions are achieved. Uniquely, in our design, the top contact is mechanically free to move under an applied stimulus. Using this, we investigate the electromechanical tuning of the junction and its tunneling conduction. Here, the molecules help control sub-nanometer mechanical modulation, which is conventionally challenging due to instabilities caused by surface adhesive forces. Our versatile approach provides a platform to develop and study active molecular junctions for emerging applications in electronics, plasmonics, and electromechanical devices.
分子可作为极端纳米级器件的最终构建块。这需要将它们精确集成到功能性异质结中,最常见的形式是金属-分子-金属结构。然而,当前制造技术造成的结构损伤和不均匀性限制了它们的有效结合。在此,我们提出一种混合制造方法,可实现均匀且有源的分子结。开发了一种模板剥离技术,以形成具有亚纳米级光滑表面的电极。结合介电泳捕获胶体纳米棒,可实现均匀的亚5纳米结。独特的是,在我们的设计中,顶部接触在施加刺激下可自由机械移动。利用这一点,我们研究了结的机电调谐及其隧穿传导。在此,分子有助于控制亚纳米级机械调制,而由于表面粘附力引起的不稳定性,这在传统上具有挑战性。我们通用的方法为开发和研究用于电子、等离子体和机电设备新兴应用的有源分子结提供了一个平台。