Suppr超能文献

基于放射学疾病负担模式的运动神经元病个体受试者的表型分类:一种机器学习方法。

Phenotypic categorisation of individual subjects with motor neuron disease based on radiological disease burden patterns: A machine-learning approach.

作者信息

Bede Peter, Murad Aizuri, Lope Jasmin, Li Hi Shing Stacey, Finegan Eoin, Chipika Rangariroyashe H, Hardiman Orla, Chang Kai Ming

机构信息

Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.

Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland.

出版信息

J Neurol Sci. 2022 Jan 15;432:120079. doi: 10.1016/j.jns.2021.120079. Epub 2021 Dec 2.

Abstract

Motor neuron disease is an umbrella term encompassing a multitude of clinically heterogeneous phenotypes. The early and accurate categorisation of patients is hugely important, as MND phenotypes are associated with markedly different prognoses, progression rates, care needs and benefit from divergent management strategies. The categorisation of patients shortly after symptom onset is challenging, and often lengthy clinical monitoring is needed to assign patients to the appropriate phenotypic subgroup. In this study, a multi-class machine-learning strategy was implemented to classify 300 patients based on their radiological profile into diagnostic labels along the UMN-LMN spectrum. A comprehensive panel of cortical thickness measures, subcortical grey matter variables, and white matter integrity metrics were evaluated in a multilayer perceptron (MLP) model. Additional exploratory analyses were also carried out using discriminant function analyses (DFA). Excellent classification accuracy was achieved for amyotrophic lateral sclerosis in the testing cohort (93.7%) using the MLP model, but poor diagnostic accuracy was detected for primary lateral sclerosis (43.8%) and poliomyelitis survivors (60%). Feature importance analyses highlighted the relevance of white matter diffusivity metrics and the evaluation of cerebellar indices, cingulate measures and thalamic radiation variables to discriminate MND phenotypes. Our data suggest that radiological data from single patients may be meaningfully interpreted if large training data sets are available and the provision of diagnostic probability outcomes may be clinically useful in patients with short symptom duration. The computational interpretation of multimodal radiology datasets herald viable diagnostic, prognostic and clinical trial applications.

摘要

运动神经元病是一个涵盖多种临床异质性表型的统称。对患者进行早期准确分类极为重要,因为运动神经元病的表型与明显不同的预后、进展速度、护理需求以及不同管理策略的获益相关。在症状出现后不久对患者进行分类具有挑战性,通常需要长期的临床监测才能将患者归入适当的表型亚组。在本研究中,实施了一种多类机器学习策略,根据300名患者的影像学特征,将他们沿上运动神经元-下运动神经元谱系分类为诊断标签。在多层感知器(MLP)模型中评估了一组全面的皮质厚度测量值、皮质下灰质变量和白质完整性指标。还使用判别函数分析(DFA)进行了额外的探索性分析。使用MLP模型在测试队列中对肌萎缩侧索硬化症实现了出色的分类准确率(93.7%),但对原发性侧索硬化症(43.8%)和脊髓灰质炎幸存者(60%)检测到较差的诊断准确率。特征重要性分析强调了白质扩散率指标以及小脑指数、扣带回测量值和丘脑辐射变量评估对于区分运动神经元病表型的相关性。我们的数据表明,如果有大型训练数据集,单例患者的影像学数据可能会得到有意义的解读,并且提供诊断概率结果在症状持续时间短的患者中可能具有临床实用性。多模态放射学数据集的计算解读预示着可行的诊断、预后和临床试验应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验