Suppr超能文献

多模态结构磁共振成像在运动神经元疾病诊断中的应用

Multimodal structural MRI in the diagnosis of motor neuron diseases.

作者信息

Ferraro Pilar M, Agosta Federica, Riva Nilo, Copetti Massimiliano, Spinelli Edoardo Gioele, Falzone Yuri, Sorarù Gianni, Comi Giancarlo, Chiò Adriano, Filippi Massimo

机构信息

Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.

Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.

出版信息

Neuroimage Clin. 2017 Aug 2;16:240-247. doi: 10.1016/j.nicl.2017.08.002. eCollection 2017.

Abstract

This prospective study developed an MRI-based method for identification of individual motor neuron disease (MND) patients and test its accuracy at the individual patient level in an independent sample compared with mimic disorders. 123 patients with amyotrophic lateral sclerosis (ALS), 44 patients with predominantly upper motor neuron disease (PUMN), 20 patients with ALS-mimic disorders, and 78 healthy controls were studied. The diagnostic accuracy of precentral cortical thickness and diffusion tensor (DT) MRI metrics of corticospinal and motor callosal tracts were assessed in a training cohort and externally proved in a validation cohort using a random forest analysis. In the training set, precentral cortical thickness showed 0.86 and 0.89 accuracy in differentiating ALS and PUMN patients from controls, while DT MRI distinguished the two groups from controls with 0.78 and 0.92 accuracy. In ALS controls, the combination of cortical thickness and DT MRI metrics (combined model) improved the classification pattern (0.91 accuracy). In the validation cohort, the best accuracy was reached by DT MRI (0.87 and 0.95 accuracy in ALS and PUMN mimic disorders). The combined model distinguished ALS and PUMN patients from mimic syndromes with 0.87 and 0.94 accuracy. A multimodal MRI approach that incorporates motor cortical and white matter alterations yields statistically significant improvement in accuracy over using each modality separately in the individual MND patient classification. DT MRI represents the most powerful tool to distinguish MND from mimic disorders.

摘要

这项前瞻性研究开发了一种基于磁共振成像(MRI)的方法来识别个体运动神经元疾病(MND)患者,并在一个独立样本中与模拟疾病进行比较,以测试其在个体患者水平上的准确性。研究了123例肌萎缩侧索硬化症(ALS)患者、44例主要为上运动神经元疾病(PUMN)患者、20例ALS模拟疾病患者和78名健康对照者。在一个训练队列中评估中央前回皮质厚度以及皮质脊髓束和运动胼胝体束的扩散张量(DT)MRI指标的诊断准确性,并在一个验证队列中使用随机森林分析进行外部验证。在训练集中,中央前回皮质厚度在区分ALS和PUMN患者与对照者时的准确率分别为0.86和0.89,而DT MRI区分这两组与对照者的准确率分别为0.78和0.92。在ALS对照中,皮质厚度和DT MRI指标的组合(联合模型)改善了分类模式(准确率为0.91)。在验证队列中,DT MRI达到了最佳准确率(在ALS和PUMN模拟疾病中的准确率分别为0.87和0.95)。联合模型区分ALS和PUMN患者与模拟综合征的准确率分别为0.87和0.94。在个体MND患者分类中,一种结合运动皮质和白质改变的多模态MRI方法在准确率上比单独使用每种模态有统计学上的显著提高。DT MRI是区分MND与模拟疾病最有效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76b6/5545829/c64ca46ae504/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验