Li Changning, Khuje Saurabh, Petit Donald, Huang Yulong, Sheng Aaron, An Lu, Di Luigi Massimigliano, Jalouli Alireza, Navarro Marieross, Islam Abdullah, Ren Shenqiang
Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America.
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America.
Nanotechnology. 2021 Dec 21;33(11). doi: 10.1088/1361-6528/ac40bc.
As one of the conductive ink materials with high electric conductivity, elemental copper (Cu) based nanocrystals promise for printable electronics. Here, single crystalline Cu nanoplates were synthesized using a facile hydrothermal method. Size engineering of Cu nanoplates can be rationalized by using the LaMer model and the versatile Cu conductive ink materials are suitable for different printing technologies. The printed Cu traces show high electric conductivity of 6 MS m, exhibiting electro-magnetic interference shielding efficiency value of 75 dB at an average thicknesses of 11m. Together with flexible alumina ceramic aerogel substrates, it kept 87% conductivity at the environmental temperature of 400 °C, demonstrating the potential of Cu conductive ink for high-temperature printable electronics applications.
作为具有高电导率的导电油墨材料之一,基于元素铜(Cu)的纳米晶体有望应用于可印刷电子领域。在此,采用简便的水热法合成了单晶铜纳米片。利用拉默模型可以合理地对铜纳米片进行尺寸工程设计,并且这种通用的铜导电油墨材料适用于不同的印刷技术。印刷的铜迹线显示出6 MS m的高电导率,在平均厚度为11μm时,电磁干扰屏蔽效率值为75 dB。与柔性氧化铝陶瓷气凝胶基板一起,在400℃的环境温度下仍保持87%的电导率,证明了铜导电油墨在高温可印刷电子应用中的潜力。