Suppr超能文献

碳纳米纤维负载的类蘑菇状二硒化钴作为析氢反应的高效催化剂。

Agaric-like cobalt diselenide supported by carbon nanofiber as an efficient catalyst for hydrogen evolution reaction.

作者信息

Feng Chuanqi, Xin Bingwei, Li Hongliang, Jia Zhen, Zhang Xiuling, Geng Bijiang

机构信息

College of Chemistry and Chemical Engineering, Dezhou University, University West Road 566, 253023 Dezhou, Shandong, PR China.

College of Chemistry and Chemical Engineering, Dezhou University, University West Road 566, 253023 Dezhou, Shandong, PR China.

出版信息

J Colloid Interface Sci. 2022 Mar 15;610:854-862. doi: 10.1016/j.jcis.2021.11.130. Epub 2021 Nov 30.

Abstract

We synthesized herein a novel 3D cathode constructed by growing cobalt diselenide in situ on the surface of carbon nanofiber for hydrogen evolution reaction. The cobalt diselenides with two typical morphologies (agaric-like and nanorod-like) were synthesized by precisely controlling reaction time and temperature in the same system. They show excellent electrocatalytic performance for hydrogen evolution reactions. Especially, the agaric-like diselenide cobalt electrode has the low overpotential (187 and 199 mV) to obtain the current density of 50 and 100 mA cm with a small Tafel slope of 37 mV dec in acidic medium. The excellent catalytic performance of the agaric-like cobalt diselenide can be attributed to its large specific surface area and fast electron transfer rate. More importantly, the agaric-like cobalt diselenide supported carbon nanofiber electrode has excellent long-term stability in electrolyte. The outstanding electrocatalytic performance and stability of agaric-like cobalt diselenide supported carbon nanofiber indicate that it is a promising electrocatalyst for hydrogen evolution reactions.

摘要

我们在此合成了一种新型的三维阴极,它是通过在碳纳米纤维表面原位生长二硒化钴构建而成,用于析氢反应。在同一体系中,通过精确控制反应时间和温度,合成了具有两种典型形态(木耳状和纳米棒状)的二硒化钴。它们对析氢反应表现出优异的电催化性能。特别是,木耳状二硒化钴电极在酸性介质中具有低过电位(187和199 mV),以获得50和100 mA cm的电流密度,塔菲尔斜率小,为37 mV dec。木耳状二硒化钴优异的催化性能可归因于其大的比表面积和快速的电子转移速率。更重要的是,木耳状二硒化钴负载的碳纳米纤维电极在电解质中具有优异的长期稳定性。木耳状二硒化钴负载的碳纳米纤维出色的电催化性能和稳定性表明,它是一种有前途的析氢反应电催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验