Suppr超能文献

miR-140-3p 通过抑制低氧条件下的 KMT5B 增强 DPSCs 的成骨/成牙分化。

miR-140-3p enhanced the osteo/odontogenic differentiation of DPSCs via inhibiting KMT5B under hypoxia condition.

机构信息

Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.

Tsinghua University Hospital, Stomatological Disease Prevention and Control Center, Tsinghua University, Beijing, China.

出版信息

Int J Oral Sci. 2021 Dec 7;13(1):41. doi: 10.1038/s41368-021-00148-y.

Abstract

Human dental pulp stem cells (DPSCs) have emerged as an important source of stem cells in the tissue engineering, and hypoxia will change various innate characteristics of DPSCs and then affect dental tissue regeneration. Nevertheless, little is known about the complicated molecular mechanisms. In this study, we aimed to investigate the influence and mechanism of miR-140-3p on DPSCs under hypoxia condition. Hypoxia was induced in DPSCs by Cobalt chloride (CoCl) treatment. The osteo/dentinogenic differentiation capacity of DPSCs was assessed by alkaline phosphatase (ALP) activity, Alizarin Red S staining and main osteo/dentinogenic markers. A luciferase reporter gene assay was performed to verify the downstream target gene of miR-140-3p. This research exhibited that miR-140-3p promoted osteo/dentinogenic differentiation of DPSCs under normoxia environment. Furthermore, miR-140-3p rescued the CoCl-induced decreased osteo/odontogenic differentiation potentials in DPSCs. Besides, we investigated that miR-140-3p directly targeted lysine methyltransferase 5B (KMT5B). Surprisingly, we found inhibition of KMT5B obviously enhanced osteo/dentinogenic differentiation of DPSCs both under normoxia and hypoxia conditions. In conclusion, our study revealed the role and mechanism of miR-140-3p for regulating osteo/dentinogenic differentiation of DPSCs under hypoxia, and discovered that miR-140-3p and KMT5B might be important targets for DPSC-mediated tooth or bone tissue regeneration.

摘要

人牙髓干细胞(DPSCs)已成为组织工程中干细胞的重要来源,缺氧会改变 DPSCs 的各种固有特性,从而影响牙齿组织再生。然而,人们对其复杂的分子机制知之甚少。在这项研究中,我们旨在研究 miR-140-3p 在缺氧条件下对 DPSCs 的影响及其机制。通过钴氯化物(CoCl)处理诱导 DPSCs 缺氧。通过碱性磷酸酶(ALP)活性、茜素红 S 染色和主要成骨/成牙本质标志物评估 DPSCs 的成骨/成牙本质分化能力。通过荧光素酶报告基因检测验证 miR-140-3p 的下游靶基因。这项研究表明,miR-140-3p 在常氧环境下促进 DPSCs 的成骨/成牙本质分化。此外,miR-140-3p 挽救了 CoCl 诱导的 DPSCs 中降低的成骨/成牙本质分化潜能。此外,我们研究了 miR-140-3p 直接靶向赖氨酸甲基转移酶 5B(KMT5B)。令人惊讶的是,我们发现抑制 KMT5B 明显增强了常氧和缺氧条件下 DPSCs 的成骨/成牙本质分化。总之,我们的研究揭示了 miR-140-3p 在调节 DPSCs 缺氧下成骨/成牙本质分化中的作用和机制,并发现 miR-140-3p 和 KMT5B 可能是 DPSC 介导的牙齿或骨组织再生的重要靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c02/8651682/7b07486db5c1/41368_2021_148_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验