Asselin Jérémie, Hopper Elizabeth R, Ringe Emilie
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.
Nanoscale. 2021 Dec 16;13(48):20649-20656. doi: 10.1039/d1nr06139a.
This work describes two different core-shell architectures based on Mg nanoparticles (NPs) synthesised in order to improve Mg's stability in aqueous solutions. The shell thickness in Mg-polydopamine NPs can be modulated from 5 to >50 nm by ending the polymerization at different times; the resulting structures stabilize the metallic, plasmonic core in water for well over an hour. Mg-silica NPs with shells ranging from 5 to 30 nm can also be prepared a modified Stöber procedure and they retain optical properties in 5% water-in-isopropanol solutions. These new architectures allow Mg nanoplasmonics to be investigated as an alternative to Ag and Au in a broader range of experimental conditions for a rich variety of applications.
这项工作描述了两种基于镁纳米颗粒(NPs)合成的不同核壳结构,以提高镁在水溶液中的稳定性。通过在不同时间终止聚合反应,镁-聚多巴胺纳米颗粒的壳层厚度可在5至大于50纳米之间调节;所得结构可使金属等离子体核在水中稳定超过一小时。壳层厚度在5至30纳米之间的镁-二氧化硅纳米颗粒也可以通过改进的施托伯方法制备,并且它们在5%异丙醇水溶液中保留光学性质。这些新结构使得镁纳米等离子体在更广泛的实验条件下作为银和金的替代品用于丰富多样的应用中得以研究。