等离子体镁纳米颗粒是高效的纳米加热器。

Plasmonic Magnesium Nanoparticles Are Efficient Nanoheaters.

作者信息

West Claire A, Lomonosov Vladimir, Pehlivan Zeki Semih, Ringe Emilie

机构信息

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom.

Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.

出版信息

Nano Lett. 2023 Dec 13;23(23):10964-10970. doi: 10.1021/acs.nanolett.3c03219. Epub 2023 Nov 27.

Abstract

Understanding and guiding light at the nanoscale can significantly impact society, for instance, by facilitating the development of efficient, sustainable, and/or cost-effective technologies. One emergent branch of nanotechnology exploits the conversion of light into heat, where heat is subsequently harnessed for various applications including therapeutics, heat-driven chemistries, and solar heating. Gold nanoparticles are overwhelmingly the most common material for plasmon-assisted photothermal applications; yet magnesium nanoparticles present a compelling alternative due to their low cost and superior biocompatibility. Herein, we measured the heat generated and quantified the photothermal efficiency of the gold and magnesium nanoparticle suspensions. Photothermal transduction experiments and optical and thermal simulations of different sizes and shapes of gold and magnesium nanoparticles showed that magnesium is more efficient at converting light into heat compared to gold at near-infrared wavelengths, thus demonstrating that magnesium nanoparticles are a promising new class of inexpensive, biodegradable photothermal platforms.

摘要

在纳米尺度上理解和引导光能够对社会产生重大影响,例如,通过推动高效、可持续和/或具有成本效益的技术发展来实现。纳米技术的一个新兴分支利用光向热的转换,随后将热量用于包括治疗、热驱动化学和太阳能加热在内的各种应用。金纳米颗粒是等离子体辅助光热应用中最为常见的材料;然而,镁纳米颗粒因其低成本和卓越的生物相容性而成为极具吸引力的替代材料。在此,我们测量了金和镁纳米颗粒悬浮液产生的热量,并对其光热效率进行了量化。对不同尺寸和形状的金和镁纳米颗粒进行的光热转换实验以及光学和热模拟表明,在近红外波长下,镁比金更有效地将光转化为热,从而证明镁纳米颗粒是一类有前景的新型廉价、可生物降解的光热平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587c/10722534/00de0a96f268/nl3c03219_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索