Suppr超能文献

DMN 与实时 fMRI 神经反馈支持的探索性治疗方法戒烟结果的相关性:烟草依赖患者的描述性统计。

Correlations Between the DMN and the Smoking Cessation Outcome of a Real-Time fMRI Neurofeedback Supported Exploratory Therapy Approach: Descriptive Statistics on Tobacco-Dependent Patients.

机构信息

9183Department of Radiology, University Hospital, LMU Munich, Munich, Germany.

9183Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

出版信息

Clin EEG Neurosci. 2022 Jul;53(4):287-296. doi: 10.1177/15500594211062703. Epub 2021 Dec 8.

Abstract

The aim of this study was to explore the potential of default mode network (DMN) functional connectivity for predicting the success of smoking cessation in patients with tobacco dependence in the context of a real-time function al MRI (RT-fMRI) neurofeedback (NF) supported therapy.Fifty-four tobacco-dependent patients underwent three RT-fMRI-NF sessions including resting-state functional connectivity (RSFC) runs over a period of 4 weeks during professionally assisted smoking cessation. Patients were randomized into two groups that performed either active NF of an addiction-related brain region or sham NF. After preprocessing, the RSFC baseline data were statistically evaluated using seed-based ROI (SBA) approaches taking into account the smoking status of patients after 3 months (abstinence/relapse).The results of the real study group showed a widespread functional connectivity in the relapse subgroup (n = 10) exceeding the DMN template and mainly low correlations and anticorrelations in the within-seed analysis. In contrast, the connectivity pattern of the abstinence subgroup (n = 8) primarily contained the core DMN in the seed-to-whole-brain analysis and a left lateralized correlation pattern in the within-seed analysis. Calculated Multi-Subject Dictionary Learning (MSDL) matrices showed anticorrelations between DMN regions and salience regions in the abstinence group. Concerning the sham group, results of the relapse subgroup (n = 4) and the abstinence subgroup (n = 6) showed similar trends only in the within-seed analysis.In the setting of a RT-fMRI-NF-assisted therapy, a widespread intrinsic DMN connectivity and a low negative coupling between the DMN and the salience network (SN) in patients with tobacco dependency during early withdrawal may be useful as an early indicator of later therapy nonresponse.

摘要

本研究旨在探索默认模式网络 (DMN) 功能连接在实时功能磁共振成像 (RT-fMRI) 神经反馈 (NF) 支持治疗背景下预测烟草依赖患者戒烟成功的潜力。54 名烟草依赖患者接受了三次 RT-fMRI-NF 治疗,包括在 4 周内进行静息态功能连接 (RSFC) 运行,在此期间进行专业辅助戒烟。患者被随机分为两组,一组对成瘾相关脑区进行主动 NF,另一组进行假 NF。在预处理后,使用基于种子的 ROI (SBA) 方法对 RSFC 基线数据进行统计学评估,同时考虑到患者在 3 个月后(戒断/复发)的吸烟状态。实际研究组的结果显示,复发亚组(n = 10)的功能连接广泛,超出了 DMN 模板,在种子内分析中主要是低相关性和反相关性。相比之下,戒断亚组(n = 8)的连接模式主要在种子到全脑分析中包含核心 DMN,在种子内分析中包含左侧相关性模式。计算的多主体字典学习 (MSDL) 矩阵显示,在戒断组中,DMN 区域与突显区域之间存在反相关。对于 sham 组,复发亚组(n = 4)和戒断亚组(n = 6)的结果仅在种子内分析中显示出相似的趋势。在 RT-fMRI-NF 辅助治疗的环境中,烟草依赖患者在早期戒断期间 DMN 内在连接广泛,DMN 与突显网络 (SN) 之间的负耦合较低,这可能是治疗反应不良的早期指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a61/9174614/e13e0db74327/10.1177_15500594211062703-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验