Suppr超能文献

基于界面超组装苯并咪唑衍生物的介孔硅纳米探针用于活细胞中铜(II)的灵敏检测和生物传感。

Interfacially Super-Assembled Benzimidazole Derivative-Based Mesoporous Silica Nanoprobe for Sensitive Copper (II) Detection and Biosensing in Living Cells.

机构信息

National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China.

Dezhou deyao Pharmaceutical Limited Company, Dezhou, 253015, P. R. China.

出版信息

Chemistry. 2022 Jan 27;28(6):e202103642. doi: 10.1002/chem.202103642. Epub 2021 Dec 22.

Abstract

Mesoporous silica nanoparticles (MSNs) functionalized with benzimidazole-derived fluorescent molecules (DHBM) are fabricated via a feasible interfacial superassembly strategy for the highly sensitive and selective detection of Cu . DHBM-MSN exhibits an obvious quenching effect on Cu in aqueous solutions, and the detection limit can be as low as 7.69×10  M. The DHBM-MSN solid-state sensor has good recyclability, and the silica framework can simultaneously improve the photostability of DHBM. Two mesoporous silica nanoparticles with different morphologies were specially designed to verify that nanocarriers with different morphologies do not affect the specific detectionability. The detection mechanism of the fluorescent probe was systematically elucidated by combining experimental results and density function theory calculations. Moreover, the detection system was successfully applied to detect Cu in bovine serum, juice, and live cells. These results indicate that the DHBM-MSN fluorescent sensor holds great potential in practical and biomedical applications.

摘要

介孔硅纳米粒子(MSNs)经苯并咪唑衍生荧光分子(DHBM)功能化,通过可行的界面超组装策略制备,用于高灵敏度和选择性检测 Cu 。DHBM-MSN 在水溶液中对 Cu 表现出明显的猝灭效应,检测限低至 7.69×10  M 。DHBM-MSN 固态传感器具有良好的可回收性,并且二氧化硅骨架可以同时提高 DHBM 的光稳定性。专门设计了两种具有不同形态的介孔硅纳米粒子,以验证具有不同形态的纳米载体不会影响特定的检测能力。通过结合实验结果和密度泛函理论计算,系统地阐明了荧光探针的检测机制。此外,该检测系统成功应用于牛血清、果汁和活细胞中 Cu 的检测。这些结果表明,DHBM-MSN 荧光传感器在实际和生物医学应用中具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验