Aggarwal Kanika, Bsoul Saja, Douglin John C, Li Songlin, Dekel Dario R, Diesendruck Charles E
Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
The Wolfson Department of Chemical engineering, The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
Chemistry. 2022 Feb 1;28(7):e202103744. doi: 10.1002/chem.202103744. Epub 2022 Jan 5.
Anion-exchange membrane fuel cells (AEMFCs) are promising energy conversion devices due to their high efficiency. Nonetheless, AEMFC operation time is currently limited by the low chemical stability of their polymeric anion-exchange membranes. In recent years, metallopolymers, where the metal centers assume the ion transport function, have been proposed as a chemically stable alternative. Here we present a systematic study using a polymer backbone with side-chain N-heterocyclic carbene (NHC) ligands complexed to various metals with low oxophilicity, such as copper, zinc, nickel, and gold. The golden metallopolymer, using the metal with the lowest oxophilicity, demonstrates exceptional alkaline stability, far superior to state-of-the-art quaternary ammonium cations, as well as good in situ AEMFC results. These results demonstrate that judiciously designed metallopolymers may be superior to purely organic membranes and provides a scientific base for further developments in the field.
阴离子交换膜燃料电池(AEMFCs)因其高效率而成为很有前景的能量转换装置。尽管如此,AEMFC的运行时间目前受到其聚合物阴离子交换膜化学稳定性低的限制。近年来,金属聚合物被提议作为一种化学稳定的替代物,其中金属中心承担离子传输功能。在此,我们展示了一项系统研究,该研究使用一种聚合物主链,其侧链N-杂环卡宾(NHC)配体与各种亲氧性低的金属(如铜、锌、镍和金)络合。使用亲氧性最低的金属的金色金属聚合物表现出卓越的碱性稳定性,远优于目前最先进的季铵阳离子,并且在AEMFC原位测试中也有良好结果。这些结果表明,经过精心设计的金属聚合物可能优于纯有机膜,并为该领域的进一步发展提供了科学依据。