West China Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China.
West China Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China.
Comput Methods Programs Biomed. 2022 Feb;214:106533. doi: 10.1016/j.cmpb.2021.106533. Epub 2021 Nov 19.
We propose a new capsule network to compensate for the information loss in the deep convolutional networks in previous studies, and to improve the performance of arrhythmia classification.
We proposed the innovative weight capsule model which uses a weight capsule network combined with sequence-to-sequence (Seq2Seq) modeling to classify arrhythmia, and explored the performance of this approach.
Based on the MIT-BIH arrhythmia database, we obtained better results compared with previous studies without data enhancement and balance for the samples. The specific performance was as follows: accuracy (ACC) = 99.85%; Class N: sensitivity (SEN) = 99.66%, positive predictive value (PPV) = 99.97%, specificity (SPEC) = 99.72%; Class S: SEN = 99.56%, PPV = 92.23%, SPEC = 99.68%; Class V: SEN = 99.97%, PPV = 99.38%, PPV = 99.96%; Class F: SEN = 93.81%, PPV = 100.00%, SPEC = 100.00%. When only half of the training sample was used, the method showed that the average accuracy and sensitivity of Class V and F were 1.57%, 2.01%, and 1.55% higher, respectively, than the traditional machine learning algorithm using the whole training sample.
Applying a weight capsule network combined with a Seq2Seq model in the field of arrhythmia not only alleviates the problem of inter-category sample imbalance effectively, but also improves the arrhythmia classification.
Our study suggests a new idea for solving the problem of small sample sizes and inter-category sample imbalance in the medical field.
我们提出了一种新的胶囊网络,以弥补先前研究中深度卷积网络中的信息丢失,并提高心律失常分类的性能。
我们提出了创新的权重胶囊模型,该模型使用权重胶囊网络结合序列到序列(Seq2Seq)建模来分类心律失常,并探索了这种方法的性能。
基于麻省理工学院-布莱根妇女医院心律失常数据库,我们在没有数据增强和平衡样本的情况下,与之前的研究相比获得了更好的结果。具体性能如下:准确率(ACC)=99.85%;无心律失常(Class N):灵敏度(SEN)=99.66%,阳性预测值(PPV)=99.97%,特异性(SPEC)=99.72%;室上性心律失常(Class S):SEN=99.56%,PPV=92.23%,SPEC=99.68%;室性心律失常(Class V):SEN=99.97%,PPV=99.38%,PPV=99.96%;室颤(Class F):SEN=93.81%,PPV=100.00%,SPEC=100.00%。当仅使用一半的训练样本时,该方法表明,与使用整个训练样本的传统机器学习算法相比,Class V 和 F 的平均准确率和灵敏度分别提高了 1.57%、2.01%和 1.55%。
将权重胶囊网络与 Seq2Seq 模型结合应用于心律失常领域,不仅有效地缓解了类别间样本不平衡的问题,而且提高了心律失常的分类效果。
我们的研究为解决医学领域中小样本量和类别间样本不平衡的问题提供了新的思路。