Suppr超能文献

用于心律失常分类的患者间心电图心跳分类:一种具有权重胶囊和序列到序列组合的多层感知器新方法。

Inter-patient ECG heartbeat classification for arrhythmia classification: a new approach of multi-layer perceptron with weight capsule and sequence-to-sequence combination.

作者信息

Zhou Chenchen, Li Xiangkui, Feng Fan, Zhang Jian, Lyu He, Wu Weixuan, Tang Xuezhi, Luo Bin, Li Dong, Xiang Wei, Yao Dengju

机构信息

Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China.

Guangxi Key Laboratory of Digital Infrastructure, Guangxi Information Center, Nanning, China.

出版信息

Front Physiol. 2023 Sep 28;14:1247587. doi: 10.3389/fphys.2023.1247587. eCollection 2023.

Abstract

The objective of this research is to construct a method to alleviate the problem of sample imbalance in classification, especially for arrhythmia classification. This approach can improve the performance of the model without using data enhancement. In this study, we have developed a new Multi-layer Perceptron (MLP) block and have used a Weight Capsule (WCapsule) network with MLP combined with sequence-to-sequence (Seq2Seq) network to classify arrhythmias. Our work is based on the MIT-BIH arrhythmia database, the original electrocardiogram (ECG) data is classified according to the criteria recommended by the American Association for Medical Instrumentation (AAMI). Also, our method's performance is further evaluated. The proposed model is evaluated using the inter-patient paradigm. Our proposed method shows an accuracy (ACC) of 99.88% under sample imbalance. For Class N, sensitivity (SEN) is 99.79%, positive predictive value (PPV) is 99.90%, and specificity (SPEC) is 99.19%. For Class S, SEN is 97.66%, PPV is 96.14%, and SPEC is 99.85%. For Class V, SEN is 99.97%, PPV is 99.07%, and SPEC is 99.94%. For Class F, SEN is 97.94%, PPV is 98.70%, and SPEC is 99.99%. When using only half of the training sample, our method shows that the SEN of Class N and V is 0.97% and 5.27% higher than the traditional machine learning algorithm. The proposed method combines MLP, weight capsule network with Seq2seq network, effectively addresses the problem of sample imbalance in arrhythmia classification, and produces good performance. Our method also shows promising potential in less samples.

摘要

本研究的目的是构建一种方法来缓解分类中样本不平衡的问题,特别是用于心律失常分类。该方法无需使用数据增强即可提高模型性能。在本研究中,我们开发了一种新的多层感知器(MLP)模块,并使用了带有MLP的权重胶囊(WCapsule)网络与序列到序列(Seq2Seq)网络相结合来对心律失常进行分类。我们的工作基于麻省理工学院 - 贝斯以色列女执事医疗中心(MIT - BIH)心律失常数据库,原始心电图(ECG)数据根据美国医疗仪器协会(AAMI)推荐的标准进行分类。此外,我们还进一步评估了我们方法的性能。所提出的模型使用患者间范式进行评估。我们提出的方法在样本不平衡情况下的准确率(ACC)为99.88%。对于N类,灵敏度(SEN)为99.79%,阳性预测值(PPV)为99.90%,特异性(SPEC)为99.19%。对于S类,SEN为97.66%,PPV为96.14%,SPEC为99.85%。对于V类,SEN为99.97%,PPV为99.07%,SPEC为99.94%。对于F类,SEN为97.94%,PPV为98.70%,SPEC为99.99%。当仅使用一半的训练样本时,我们的方法表明,N类和V类的SEN比传统机器学习算法分别高0.97%和5.27%。所提出的方法将MLP、权重胶囊网络与Seq2seq网络相结合,有效解决了心律失常分类中的样本不平衡问题,并产生了良好的性能。我们的方法在较少样本情况下也显示出有前景的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/990f/10569428/4b6c52401623/fphys-14-1247587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验