Suppr超能文献

利用广义估计方程对二分类结局的截面式分段-整群随机试验进行分析时的功效计算。

Power calculation for analyses of cross-sectional stepped-wedge cluster randomized trials with binary outcomes via generalized estimating equations.

机构信息

Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA.

Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA.

出版信息

Stat Med. 2021 Dec 20;40(29):6674-6688. doi: 10.1002/sim.9205. Epub 2021 Sep 23.

Abstract

Power calculation for stepped-wedge cluster randomized trials (SW-CRTs) presents unique challenges, beyond those of standard parallel cluster randomized trials, due to the need to consider temporal within cluster correlations and background period effects. To date, power calculation methods specific to SW-CRTs have primarily been developed under a linear model. When the outcome is binary, the use of a linear model corresponds to assessing a prevalence difference; yet trial analysis often employs a nonlinear link function. We propose power calculation methods for cross-sectional SW-CRTs under a logistic model fitted by generalized estimating equations. Firstly, under an exchangeable correlation structure, we show the power based on a logistic model is lower than that from assuming a linear model in the absence of period effects. We then evaluate the impact of background prevalence changes over time on power. To allow the correlation among outcomes in the same cluster to change over time and with treatment status, we generalize the methods to more complex correlation structures. Our simulation studies demonstrate that the proposed power calculation methods perform well with the model-based variance under the true correlation structure and reveal that a working independence structure can result in substantial efficiency loss, while a working exchangeable structure performs well even when the underlying correlation structure deviates from exchangeable. An extension to our methods accounts for variable cluster sizes and reveals that unequal cluster sizes have a modest impact on power. We illustrate the approaches by application to a quality of care improvement trial for acute coronary syndrome.

摘要

阶梯式群组随机试验 (SW-CRTs) 的功效计算提出了独特的挑战,超出了标准平行群组随机试验的挑战,因为需要考虑到群组内的时间相关性和背景周期效应。迄今为止,针对 SW-CRTs 的功效计算方法主要是在线性模型下开发的。当结果为二分类时,线性模型的使用对应于评估患病率差异;然而,试验分析通常采用非线性链接函数。我们提出了在广义估计方程拟合的逻辑模型下,用于横断面 SW-CRTs 的功效计算方法。首先,在可交换相关性结构下,我们表明在不存在周期效应的情况下,基于逻辑模型的功效低于线性模型的功效。然后,我们评估了随时间变化的背景流行率变化对功效的影响。为了允许同一群组中的结果之间的相关性随时间和治疗状态而变化,我们将方法推广到更复杂的相关性结构。我们的模拟研究表明,所提出的功效计算方法在真实相关性结构下基于模型的方差下表现良好,并揭示出工作独立性结构可能导致效率损失,而工作可交换结构即使在基础相关性结构偏离可交换时也能表现良好。我们的方法的扩展考虑了可变的群组大小,并揭示了不等的群组大小对功效的影响不大。我们通过对急性冠状动脉综合征的护理质量改进试验的应用来说明这些方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/593a/8900518/6f04b024bead/nihms-1781068-f0001.jpg

相似文献

本文引用的文献

6
swCRTdesign: An RPackage for Stepped Wedge Trial Design and Analysis.swCRTdesign:用于阶乘楔形试验设计和分析的 R 包。
Comput Methods Programs Biomed. 2020 Nov;196:105514. doi: 10.1016/j.cmpb.2020.105514. Epub 2020 May 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验