Vinnikov Volodymyr, Belyakov Oleg
International Atomic Energy Agency (IAEA), Vienna, Austria; Grigoriev Institute for Medical Radiology and Oncology (GIMRO), Kharkiv, Ukraine.
International Atomic Energy Agency (IAEA), Vienna, Austria.
Semin Nucl Med. 2022 Mar;52(2):114-139. doi: 10.1053/j.semnuclmed.2021.11.008. Epub 2021 Dec 6.
Radiation dosimetric biomarkers have found applications beyond radiation protection area and now are actively introduced into clinical practice. Cytogenetic assays appeared to be a valuable tool for individualized quantifying radiation effects in patients, with high capability for assessing genotoxicity of various medical exposure modalities and providing meaningful radiation dose estimates for prognoses of radiation-related cancer risk. This review summarized current data on the use of biological dosimetry methods in patients undergoing various medical irradiations to low doses. The highlighted topics include basic aspects of biological dosimetry and its limitations in the range of low radiation doses, and main patterns of in vivo induction of radiation biomarkers in clinical exposure scenarios, occurring in X-ray diagnostics, computed tomography, interventional radiology, low dose radiotherapy, and nuclear medicine (internally administered I and other radiopharmaceuticals). Additionally, several specific issues, examined by biodosimetry techniques, are analysed, such as contrast media effect, radiation response in pediatric patients, impact of magnetic resonance imaging, evaluation of radioprotectors, detection of patients' abnormal intrinsic radiosensitivity and dose estimation in persons involved in medical radiation incidents. A prognosis of possible directions for further improvements in this area includes the automation of cytogenetic analysis, introduction of molecular biodosimeters and development of multiparametric biodosimetry platforms. A potential approach to the advanced biodosimetry of internal exposure and/or low dose external irradiation is suggested; this can be a multiparametric platform based on the combination of the γ-H2AX foci, dicentric, and translocation assays, each applied in the optimum postexposure time range, with the amalgamation of the dose estimates. The study revealed the necessity of further research, which might clarify medical radiation safety concerns for patients via using stringent biodosimetry methodology.
辐射剂量生物标志物的应用已超出辐射防护领域,目前正积极引入临床实践。细胞遗传学检测似乎是一种有价值的工具,可用于对患者的辐射效应进行个体化量化,具有评估各种医学照射方式的遗传毒性以及为辐射相关癌症风险的预后提供有意义的辐射剂量估计的高能力。本综述总结了目前关于在接受各种低剂量医学照射的患者中使用生物剂量测定方法的数据。突出的主题包括生物剂量测定的基本方面及其在低辐射剂量范围内的局限性,以及在临床照射场景中体内辐射生物标志物诱导的主要模式,这些场景发生在X射线诊断、计算机断层扫描、介入放射学、低剂量放射治疗和核医学(内部施用碘及其他放射性药物)中。此外,还分析了生物剂量测定技术研究的几个具体问题,如造影剂效应、儿科患者的辐射反应、磁共振成像的影响、辐射防护剂的评估、患者异常固有放射敏感性的检测以及医疗辐射事故中人员的剂量估计。该领域进一步改进的可能方向的预测包括细胞遗传学分析的自动化、分子生物剂量计的引入以及多参数生物剂量测定平台的开发。提出了一种针对内照射和/或低剂量外照射的先进生物剂量测定的潜在方法;这可以是一个基于γ-H2AX焦点、双着丝粒体和易位检测组合的多参数平台,每种检测在最佳照射后时间范围内应用,并合并剂量估计。该研究揭示了进一步研究的必要性,这可能通过使用严格的生物剂量测定方法来澄清患者的医疗辐射安全问题。