Suppr超能文献

甲氨蝶呤控制的化学二聚系统设计及其在生物电子器件中的应用。

Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices.

机构信息

ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia.

Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia.

出版信息

Nat Commun. 2021 Dec 8;12(1):7137. doi: 10.1038/s41467-021-27184-w.

Abstract

Natural evolution produced polypeptides that selectively recognize chemical entities and their polymers, ranging from ions to proteins and nucleic acids. Such selective interactions serve as entry points to biological signaling and metabolic pathways. The ability to engineer artificial versions of such entry points is a key goal of synthetic biology, bioengineering and bioelectronics. We set out to map the optimal strategy for developing artificial small molecule:protein complexes that function as chemically induced dimerization (CID) systems. Using several starting points, we evolved CID systems controlled by a therapeutic drug methotrexate. Biophysical and structural analysis of methotrexate-controlled CID system reveals the critical role played by drug-induced conformational change in ligand-controlled protein complex assembly. We demonstrate utility of the developed CID by constructing electrochemical biosensors of methotrexate that enable quantification of methotrexate in human serum. Furthermore, using the methotrexate and functionally related biosensor of rapamycin we developed a multiplexed bioelectronic system that can perform repeated measurements of multiple analytes. The presented results open the door for construction of genetically encoded signaling systems for use in bioelectronics and diagnostics, as well as metabolic and signaling network engineering.

摘要

自然进化产生了能够选择性识别化学实体及其聚合物的多肽,范围从离子到蛋白质和核酸。这种选择性相互作用是生物信号转导和代谢途径的入口点。工程化人工入口点的能力是合成生物学、生物工程和生物电子学的主要目标。我们着手绘制开发人工小分子:蛋白质复合物的最佳策略,这些复合物可以作为化学诱导二聚化(CID)系统发挥作用。我们使用几个起点,进化出受治疗药物甲氨蝶呤控制的 CID 系统。对甲氨蝶呤控制的 CID 系统的生物物理和结构分析揭示了药物诱导的构象变化在配体控制的蛋白质复合物组装中所起的关键作用。我们通过构建甲氨蝶呤电化学生物传感器来证明所开发的 CID 的实用性,该传感器能够定量检测人血清中的甲氨蝶呤。此外,我们使用开发的甲氨蝶呤和功能相关的雷帕霉素生物传感器,构建了一个能够对多个分析物进行重复测量的多路复用生物电子系统。所呈现的结果为构建用于生物电子学和诊断以及代谢和信号网络工程的遗传编码信号系统开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4db8/8654847/6508d89cc1dd/41467_2021_27184_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验