Suppr超能文献

菲洛空工程对光学非线性的巨大调制。

Giant modulation of optical nonlinearity by Floquet engineering.

机构信息

Department of Physics, California Institute of Technology, Pasadena, CA, USA.

Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA.

出版信息

Nature. 2021 Dec;600(7888):235-239. doi: 10.1038/s41586-021-04051-8. Epub 2021 Dec 8.

Abstract

Strong periodic driving with light offers the potential to coherently manipulate the properties of quantum materials on ultrafast timescales. Recently, strategies have emerged to drastically alter electronic and magnetic properties by optically inducing non-trivial band topologies, emergent spin interactions and even superconductivity. However, the prospects and methods of coherently engineering optical properties on demand are far less understood. Here we demonstrate coherent control and giant modulation of optical nonlinearity in a van der Waals layered magnetic insulator, manganese phosphorus trisulfide (MnPS). By driving far off-resonance from the lowest on-site manganese d-d transition, we observe a coherent on-off switching of its optical second harmonic generation efficiency on the timescale of 100 femtoseconds with no measurable dissipation. At driving electric fields of the order of 10 volts per metre, the on-off ratio exceeds 10, which is limited only by the sample damage threshold. Floquet theory calculations based on a single-ion model of MnPS are able to reproduce the measured driving field amplitude and polarization dependence of the effect. Our approach can be applied to a broad range of insulating materials and could lead to dynamically designed nonlinear optical elements.

摘要

强周期驱动与光相结合,为在超快时间尺度上相干地操纵量子材料的性质提供了可能。最近,人们已经提出了一些策略,通过光诱导非平凡能带拓扑、新兴的自旋相互作用甚至超导性,来显著改变电子和磁性性质。然而,对于按需相干地工程光学性质的前景和方法,人们的理解还远远不够。在这里,我们展示了在范德瓦尔斯层状磁绝缘体-三硫化锰磷(MnPS)中,对光学非线性的相干控制和巨大调制。通过远离最低局域锰 d-d 跃迁的共振驱动,我们在 100 飞秒的时间尺度内观察到其光学二次谐波产生效率的相干通断开关,而没有可测量的耗散。在约 10 伏特/米的驱动电场下,通断比超过 10,这仅受限于样品的破坏阈值。基于 MnPS 的单离子模型的 Floquet 理论计算能够重现测量到的驱动场幅度和效应的极化依赖性。我们的方法可以应用于广泛的绝缘材料,并可能导致动态设计的非线性光学元件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验