Suppr超能文献

尼日利亚新冠肺炎及其风险因素的空间变异性:一种空间回归方法。

Spatial variability of COVID-19 and its risk factors in Nigeria: A spatial regression method.

作者信息

Bayode Taye, Popoola Ayobami, Akogun Olawale, Siegmund Alexander, Magidimisha-Chipungu Hangwelani, Ipingbemi Olusiyi

机构信息

Heidelberg Centre for Environment (HCE) & Institute of Geography, Heidelberg University, Germany.

Department of Geography - Research Group for Earth Observation(geo), UNESCO Chair on World Heritage and Biosphere Reserve Observation and Education, Heidelberg University of Education, Germany.

出版信息

Appl Geogr. 2022 Jan;138:102621. doi: 10.1016/j.apgeog.2021.102621. Epub 2021 Dec 3.

Abstract

The novel and unprecedented Coronavirus disease (COVID-19) pandemic has negatively impacted most nations of the world within a short period. While its disproportionate social and spatial variability has been established, the reality in Nigeria is yet to be studied. In this paper, advanced spatial statistical techniques were engaged to study the burden of COVID-19 and its risk factors within the first quarter (March-May) of its incidence in Nigeria. The spatial autocorrelation (Moran's I) test reveals a significant but marginal cluster of COVID-19 occurrence in Nigeria ( = 0.11, p < 0.05). A model comparison between ordinary least square (OLS) and spatial error model (SER) was explored having checked for multicollinearity in the dataset. The OLS model explained about 64% (adjusted R = 0.64) of variation in COVID-19 cases, however with significantly clustered residuals. The SER model performed better with randomly distributed residuals. The significant predictors were population density, international airport, and literacy ratio. Furthermore, this study addressed the spatial planning implications of the ongoing disease outbreak while it advocates transdisciplinary approach to urban planning practices in Nigeria.

摘要

新型冠状病毒病(COVID-19)疫情史无前例,在短时间内对世界上大多数国家都产生了负面影响。虽然其在社会和空间上的不均衡差异已得到证实,但尼日利亚的实际情况尚待研究。本文运用先进的空间统计技术,对尼日利亚COVID-19疫情爆发第一季度(3月至5月)的负担及其风险因素进行了研究。空间自相关(莫兰指数I)检验显示,尼日利亚的COVID-19疫情存在显著但微弱的聚集现象(I = 0.11,p < 0.05)。在检查了数据集中的多重共线性后,对普通最小二乘法(OLS)模型和空间误差模型(SER)进行了模型比较。OLS模型解释了COVID-19病例约64%的变异(调整后R = 0.64),但其残差存在显著聚集。SER模型表现更好,其残差呈随机分布。显著的预测因素包括人口密度、国际机场和识字率。此外,本研究探讨了当前疫情爆发对空间规划的影响,同时倡导在尼日利亚的城市规划实践中采用跨学科方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39bc/8639413/97d4dc272192/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验