Suppr超能文献

外周血指标对T1期肾细胞癌肾窦侵犯预测的综合分析:一项使用机器学习辅助决策支持模型的综合研究

Integrative Analysis of Peripheral Blood Indices for the Renal Sinus Invasion Prediction of T1 Renal Cell Carcinoma: An Ensemble Study Using Machine Learning-Assisted Decision-Support Models.

作者信息

Li Xin, Liu Bo, Cui Peng, Zhao Xingxing, Liu Zhao, Qi Yanxiang, Zhang Gangling

机构信息

Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People's Republic of China.

出版信息

Cancer Manag Res. 2022 Feb 15;14:577-588. doi: 10.2147/CMAR.S348694. eCollection 2022.

Abstract

PURPOSE

Renal sinus invasion is an attributive factor affecting the prognosis of renal cell carcinoma (RCC). This study aimed to construct a risk prediction model that could stratify patients with RCC and predict renal sinus invasion with the help of a machine learning (ML) algorithm.

PATIENTS AND METHODS

We retrospectively recruited 1229 patients diagnosed with T1 stage RCC at the Baotou Cancer Hospital between November 2013 and August 2021. Iterative analysis was used to screen out predictors related to renal sinus invasion, after which ML-based models were developed to predict renal sinus invasion in patients with T1 stage RCC. The receiver operating characteristic curve (ROC), decision curve analysis (DCA), and clinical impact curve (CIC) were performed to evaluate the robustness and clinical practicability of each model.

RESULTS

A total of 21 candidate variables were shortlisted for model building. Iterative analysis screened that neutrophil to albumin ratio (NAR), hemoglobin level * albumin level * lymphocyte count/platelet count ratio (HALP), prognostic nutrition index (PNI), body mass index*serum albumin/neutrophil-lymphocyte ratio (AKI), NAR, and fibrinogen (FIB) concentration (NARFIB), platelet to lymphocyte ratio (PLR), and R.E.N.A.L score was related to renal sinus invasion and contributed significantly to ML-based algorithm. The areas under the ROC curve (AUCs) of the random forest classifier (RFC) model, support vector machine (SVM), eXtreme gradient boosting (XGBoost), artificial neural network (ANN), and decision tree (DT) ranged from 0.797 to 0.924. The optimal risk probability of renal sinus invasion predicted was RFC (AUC = 0.924, 95% confidence interval [CI]: 0.414-1.434), which showed robust discrimination for identifying high-risk patients.

CONCLUSION

We successfully develop practical models for renal sinus invasion prediction, particularly the RFC, which could contribute to early detection via integrating systemic inflammatory factors and nutritional parameters.

摘要

目的

肾窦侵犯是影响肾细胞癌(RCC)预后的一个归因因素。本研究旨在构建一个风险预测模型,该模型能够对RCC患者进行分层,并借助机器学习(ML)算法预测肾窦侵犯情况。

患者与方法

我们回顾性招募了2013年11月至2021年8月期间在包头市肿瘤医院被诊断为T1期RCC的1229例患者。采用迭代分析筛选出与肾窦侵犯相关的预测因素,之后开发基于ML的模型来预测T1期RCC患者的肾窦侵犯情况。进行受试者操作特征曲线(ROC)、决策曲线分析(DCA)和临床影响曲线(CIC)以评估每个模型的稳健性和临床实用性。

结果

共有21个候选变量被列入模型构建的候选名单。迭代分析筛选出中性粒细胞与白蛋白比值(NAR)、血红蛋白水平×白蛋白水平×淋巴细胞计数/血小板计数比值(HALP)、预后营养指数(PNI)、体重指数×血清白蛋白/中性粒细胞-淋巴细胞比值(AKI)、NAR和纤维蛋白原(FIB)浓度(NARFIB)、血小板与淋巴细胞比值(PLR)以及R.E.N.A.L评分与肾窦侵犯相关,并对基于ML的算法有显著贡献。随机森林分类器(RFC)模型、支持向量机(SVM)、极限梯度提升(XGBoost)、人工神经网络(ANN)和决策树(DT)的ROC曲线下面积(AUC)范围为0.797至0.924。预测肾窦侵犯的最佳风险概率为RFC(AUC = 0.924,95%置信区间[CI]:0.414 - 1.434),其在识别高危患者方面显示出强大的辨别力。

结论

我们成功开发了用于肾窦侵犯预测的实用模型,尤其是RFC,它通过整合全身炎症因子和营养参数有助于早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fde6/8857979/386c829b28f1/CMAR-14-577-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验