Suppr超能文献

基于支持向量机的肺动脉高压患者分类器的构建

Construction of a Support Vector Machine-Based Classifier for Pulmonary Arterial Hypertension Patients.

作者信息

Shang Zhenglu, Sun Jiashun, Hui Jingjiao, Yu Yanhua, Bian Xiaoyun, Yang Bowen, Deng Kewu, Lin Li

机构信息

Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China.

Department of Hospital, Wuxi Huishan District People's Hospital, Wuxi, China.

出版信息

Front Genet. 2021 Nov 22;12:781011. doi: 10.3389/fgene.2021.781011. eCollection 2021.

Abstract

Pulmonary arterial hypertension (PAH) is a disease leading to right heart failure and death due to increased pulmonary arterial tension and vascular resistance. So far, PAH has not been fully understood, and current treatments are much limited. Gene expression profiles of healthy people and PAH patients in GSE33463 dataset were analyzed in this study. Then 110 differentially expressed genes (DEGs) were obtained. Afterward, the PPI network based on DEGs was constructed, followed by the analysis of functional modules, whose results showed that the genes in the major function modules significantly enriched in immune-related functions. Moreover, four optimal feature genes were screened from the DEGs by support vector machine-recursive feature elimination (SVM-RFE) algorithm (EPB42, IFIT2, FOSB, and SNF1LK). The receiver operating characteristic curve showed that the SVM classifier based on optimal feature genes could effectively distinguish healthy people from PAH patients. Last, the expression of optimal feature genes was analyzed in the GSE33463 dataset and clinical samples. It was found that EPB42 and IFIT2 were highly expressed in PAH patients, while FOSB and SNF1LK were lowly expressed. In conclusion, the four optimal feature genes screened here are potential biomarkers for PAH and are expected to be used in early diagnosis for PAH.

摘要

肺动脉高压(PAH)是一种由于肺动脉张力和血管阻力增加导致右心衰竭和死亡的疾病。到目前为止,PAH尚未被完全理解,并且目前的治疗方法非常有限。本研究分析了GSE33463数据集中健康人和PAH患者的基因表达谱。然后获得了110个差异表达基因(DEG)。随后,构建了基于DEG的蛋白质-蛋白质相互作用(PPI)网络,接着对功能模块进行分析,结果表明主要功能模块中的基因显著富集于免疫相关功能。此外,通过支持向量机-递归特征消除(SVM-RFE)算法从DEG中筛选出四个最佳特征基因(EPB42、IFIT2、FOSB和SNF1LK)。受试者工作特征曲线表明,基于最佳特征基因的支持向量机分类器能够有效地区分健康人和PAH患者。最后,在GSE33463数据集和临床样本中分析了最佳特征基因的表达。结果发现,EPB42和IFIT2在PAH患者中高表达,而FOSB和SNF1LK低表达。总之,这里筛选出的四个最佳特征基因是PAH的潜在生物标志物,有望用于PAH的早期诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验