State Key Lab of CAD&CG, College of Computer Science and Technology, Zhejiang University, Hangzhou, 310027, China.
School of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, China.
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1895-1910. doi: 10.1007/s11548-017-1649-7. Epub 2017 Jul 31.
Delineation of thyroid nodule boundaries from ultrasound images plays an important role in calculation of clinical indices and diagnosis of thyroid diseases. However, it is challenging for accurate and automatic segmentation of thyroid nodules because of their heterogeneous appearance and components similar to the background. In this study, we employ a deep convolutional neural network (CNN) to automatically segment thyroid nodules from ultrasound images.
Our CNN-based method formulates a thyroid nodule segmentation problem as a patch classification task, where the relationship among patches is ignored. Specifically, the CNN used image patches from images of normal thyroids and thyroid nodules as inputs and then generated the segmentation probability maps as outputs. A multi-view strategy is used to improve the performance of the CNN-based model. Additionally, we compared the performance of our approach with that of the commonly used segmentation methods on the same dataset.
The experimental results suggest that our proposed method outperforms prior methods on thyroid nodule segmentation. Moreover, the results show that the CNN-based model is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. In detail, our CNN-based model can achieve an average of the overlap metric, dice ratio, true positive rate, false positive rate, and modified Hausdorff distance as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] on overall folds, respectively.
Our proposed method is fully automatic without any user interaction. Quantitative results also indicate that our method is so efficient and accurate that it can be good enough to replace the time-consuming and tedious manual segmentation approach, demonstrating the potential clinical applications.
从超声图像中描绘甲状腺结节边界对于计算临床指标和诊断甲状腺疾病非常重要。然而,由于甲状腺结节的异质性外观和与背景相似的成分,准确且自动地对其进行分割具有挑战性。在本研究中,我们采用深度卷积神经网络(CNN)自动从超声图像中分割甲状腺结节。
我们基于 CNN 的方法将甲状腺结节分割问题表述为一个补丁分类任务,其中忽略了补丁之间的关系。具体来说,所使用的 CNN 以正常甲状腺和甲状腺结节图像中的图像补丁作为输入,然后生成分割概率图作为输出。采用多视图策略来提高基于 CNN 的模型的性能。此外,我们在相同的数据集上比较了我们的方法与常用分割方法的性能。
实验结果表明,我们提出的方法在甲状腺结节分割方面优于先前的方法。此外,结果表明,基于 CNN 的模型能够准确有效地描绘甲状腺超声图像中的多个结节。具体来说,我们的基于 CNN 的模型在总体折叠上的平均重叠度量、骰子比、真阳性率、假阳性率和修正 Hausdorff 距离分别为 [Formula: see text]、[Formula: see text]、[Formula: see text]、[Formula: see text] 和 [Formula: see text]。
我们提出的方法是完全自动的,无需任何用户交互。定量结果还表明,我们的方法效率高且准确,可以很好地替代耗时且繁琐的手动分割方法,显示出其潜在的临床应用。