Suppr超能文献

一种用于乳腺超声图像肿瘤分割的混合注意力引导网络。

A hybrid attentional guidance network for tumors segmentation of breast ultrasound images.

机构信息

Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, 510632, China.

College of Information Science and Technology, Jinan University, Guangzhou, 510632, China.

出版信息

Int J Comput Assist Radiol Surg. 2023 Aug;18(8):1489-1500. doi: 10.1007/s11548-023-02849-7. Epub 2023 Feb 28.

Abstract

PURPOSE

In recent years, breast cancer has become the greatest threat to women. There are many studies dedicated to the precise segmentation of breast tumors, which is indispensable in computer-aided diagnosis. Deep neural networks have achieved accurate segmentation of images. However, convolutional layers are biased to extract local features and tend to lose global and location information as the network deepens, which leads to a decrease in breast tumors segmentation accuracy. For this reason, we propose a hybrid attention-guided network (HAG-Net). We believe that this method will improve the detection rate and segmentation of tumors in breast ultrasound images.

METHODS

The method is equipped with multi-scale guidance block (MSG) for guiding the extraction of low-resolution location information. Short multi-head self-attention (S-MHSA) and convolutional block attention module are used to capture global features and long-range dependencies. Finally, the segmentation results are obtained by fusing multi-scale contextual information.

RESULTS

We compare with 7 state-of-the-art methods on two publicly available datasets through five random fivefold cross-validations. The highest dice coefficient, Jaccard Index and detect rate ([Formula: see text]%, [Formula: see text]%, [Formula: see text]% and [Formula: see text]%, [Formula: see text]%, [Formula: see text]%, separately) obtained on two publicly available datasets(BUSI and OASUBD), prove the superiority of our method.

CONCLUSION

HAG-Net can better utilize multi-resolution features to localize the breast tumors. Demonstrating excellent generalizability and applicability for breast tumors segmentation compare to other state-of-the-art methods.

摘要

目的

近年来,乳腺癌已成为女性健康的最大威胁。有许多研究致力于对乳腺肿瘤进行精确分割,这在计算机辅助诊断中是必不可少的。深度神经网络已经实现了图像的精确分割。然而,卷积层偏向于提取局部特征,并且随着网络的加深,往往会丢失全局和位置信息,从而导致乳腺肿瘤分割精度下降。为此,我们提出了一种混合注意力引导网络(HAG-Net)。我们相信,这种方法将提高对乳腺超声图像中肿瘤的检测率和分割率。

方法

该方法配备了多尺度引导块(MSG),用于引导对低分辨率位置信息的提取。使用短多头自注意力(S-MHSA)和卷积块注意力模块来捕捉全局特征和长程依赖关系。最后,通过融合多尺度上下文信息来获得分割结果。

结果

我们在两个公开可用的数据集上通过五次随机五折交叉验证,与 7 种最先进的方法进行了比较。在两个公开可用的数据集(BUSI 和 OASUBD)上获得的最高 Dice 系数、Jaccard 指数和检测率([Formula: see text]%、[Formula: see text]%、[Formula: see text]%和[Formula: see text]%、[Formula: see text]%、[Formula: see text]%,分别),证明了我们方法的优越性。

结论

HAG-Net 可以更好地利用多分辨率特征来定位乳腺肿瘤。与其他最先进的方法相比,在乳腺肿瘤分割方面表现出了出色的泛化能力和适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验