Suppr超能文献

控制基于丁酰辅酶 A 的模块化微生物生物合成设计酯的选择性。

Controlling selectivity of modular microbial biosynthesis of butyryl-CoA-derived designer esters.

机构信息

Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.

出版信息

Metab Eng. 2022 Jan;69:262-274. doi: 10.1016/j.ymben.2021.12.001. Epub 2021 Dec 6.

Abstract

Short-chain esters have broad utility as flavors, fragrances, solvents, and biofuels. Controlling selectivity of ester microbial biosynthesis has been an outstanding metabolic engineering problem. In this study, we enabled the de novo fermentative microbial biosynthesis of butyryl-CoA-derived designer esters (e.g., butyl acetate, ethyl butyrate, butyl butyrate) in Escherichia coli with controllable selectivity. Using the modular design principles, we generated the butyryl-CoA-derived ester pathways as exchangeable production modules compatible with an engineered chassis cell for anaerobic production of designer esters. We designed these modules derived from an acyl-CoA submodule (e.g., acetyl-CoA, butyryl-CoA), an alcohol submodule (e.g., ethanol, butanol), a cofactor regeneration submodule (e.g., NADH), and an alcohol acetyltransferase (AAT) submodule (e.g., ATF1, SAAT) for rapid module construction and optimization by manipulating replication (e.g., plasmid copy number), transcription (e.g., promoters), translation (e.g., codon optimization), pathway enzymes, and pathway induction conditions. To further enhance production of designer esters with high selectivity, we systematically screened various strategies of protein solubilization using protein fusion tags and chaperones to improve the soluble expression of multiple pathway enzymes. Finally, our engineered ester-producing strains could achieve 19-fold increase in butyl acetate production (0.64 g/L, 96% selectivity), 6-fold increase in ethyl butyrate production (0.41 g/L, 86% selectivity), and 13-fold increase in butyl butyrate production (0.45 g/L, 54% selectivity) as compared to the initial strains. Overall, this study presented a generalizable framework to engineer modular microbial platforms for anaerobic production of butyryl-CoA-derived designer esters from renewable feedstocks.

摘要

短链酯作为风味剂、香料、溶剂和生物燃料具有广泛的用途。控制酯类微生物生物合成的选择性一直是一个突出的代谢工程问题。在这项研究中,我们使大肠杆菌能够从头发酵微生物生物合成丁酰辅酶 A 衍生的设计酯(例如,乙酸丁酯、丁酸乙酯、丁酸丁酯),并具有可控的选择性。使用模块化设计原则,我们生成了丁酰辅酶 A 衍生的酯途径,作为可交换的生产模块,与用于厌氧生产设计酯的工程底盘细胞兼容。我们设计了这些模块,源自酰基辅酶 A 亚模块(例如,乙酰辅酶 A、丁酰辅酶 A)、醇亚模块(例如,乙醇、丁醇)、辅因子再生亚模块(例如,NADH)和醇乙酰基转移酶(AAT)亚模块(例如,ATF1、SAAT),通过操纵复制(例如,质粒拷贝数)、转录(例如,启动子)、翻译(例如,密码子优化)、途径酶和途径诱导条件,实现快速模块构建和优化。为了进一步提高高选择性设计酯的产量,我们系统地筛选了各种使用蛋白融合标签和伴侣蛋白的蛋白溶解策略,以提高多种途径酶的可溶性表达。最后,我们的工程酯生产菌株可以将乙酸丁酯的产量提高 19 倍(0.64g/L,96%选择性),丁酸乙酯的产量提高 6 倍(0.41g/L,86%选择性),丁酸丁酯的产量提高 13 倍(0.45g/L,54%选择性),与初始菌株相比。总的来说,这项研究提出了一个可推广的框架,用于工程模块化微生物平台,从可再生原料中厌氧生产丁酰辅酶 A 衍生的设计酯。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验