Suppr超能文献

工程化改造氯霉素乙酰转移酶以用于微生物设计酯类生物合成。

Engineering promiscuity of chloramphenicol acetyltransferase for microbial designer ester biosynthesis.

机构信息

Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

Metab Eng. 2021 Jul;66:179-190. doi: 10.1016/j.ymben.2021.04.005. Epub 2021 Apr 16.

Abstract

Robust and efficient enzymes are essential modules for metabolic engineering and synthetic biology strategies across biological systems to engineer whole-cell biocatalysts. By condensing an acyl-CoA and an alcohol, alcohol acyltransferases (AATs) can serve as interchangeable metabolic modules for microbial biosynthesis of a diverse class of ester molecules with broad applications as flavors, fragrances, solvents, and drop-in biofuels. However, the current lack of robust and efficient AATs significantly limits their compatibility with heterologous precursor pathways and microbial hosts. Through bioprospecting and rational protein engineering, we identified and engineered promiscuity of chloramphenicol acetyltransferases (CATs) from mesophilic prokaryotes to function as robust and efficient AATs compatible with at least 21 alcohol and 8 acyl-CoA substrates for microbial biosynthesis of linear, branched, saturated, unsaturated and/or aromatic esters. By plugging the best engineered CAT (CATec3 Y20F) into the gram-negative mesophilic bacterium Escherichia coli, we demonstrated that the recombinant strain could effectively convert various alcohols into desirable esters, for instance, achieving a titer of 13.9 g/L isoamyl acetate with 95% conversion by fed-batch fermentation. The recombinant E. coli was also capable of simulating the ester profile of roses with high conversion (>97%) and titer (>1 g/L) from fermentable sugars at 37 °C. Likewise, a recombinant gram-positive, cellulolytic, thermophilic bacterium Clostridium thermocellum harboring CATec3 Y20F could produce many of these esters from recalcitrant cellulosic biomass at elevated temperatures (>50 °C) due to the engineered enzyme's remarkable thermostability. Overall, the engineered CATs can serve as a robust and efficient platform for designer ester biosynthesis from renewable and sustainable feedstocks.

摘要

通过缩合酰基辅酶 A 和醇,醇酰基转移酶(AAT)可以作为微生物生物合成各种酯类分子的可互换代谢模块,这些酯类分子具有广泛的应用,如香料、香精、溶剂和可替代的生物燃料。然而,目前缺乏稳健且高效的 AAT,这极大地限制了它们与异源前体途径和微生物宿主的兼容性。通过生物勘探和合理的蛋白质工程,我们从嗜温原核生物中鉴定并工程改造了氯霉素乙酰转移酶(CAT)的多功能性,使其能够作为稳健且高效的 AAT,与至少 21 种醇和 8 种酰基辅酶 A 底物兼容,用于微生物生物合成线性、支链、饱和、不饱和和/或芳香酯。通过将最佳工程化的 CAT(CATec3 Y20F)插入革兰氏阴性嗜温菌大肠杆菌中,我们证明了重组菌株能够有效地将各种醇转化为所需的酯,例如,通过分批补料发酵实现了 13.9 g/L 异戊酸乙酯的产量和 95%的转化率。该重组大肠杆菌还能够模拟玫瑰的酯谱,在 37°C 下从可发酵糖以>97%的转化率和>1 g/L 的浓度生成酯。同样,携带 CATec3 Y20F 的革兰氏阳性、纤维素分解、嗜热菌 Clostridium thermocellum 重组菌也能够在高温(>50°C)下从难降解的纤维素生物质中生产许多这些酯,这要归功于工程化酶的显著热稳定性。总之,该工程化的 CAT 可以作为从可再生和可持续原料设计酯类生物合成的强大且高效的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验