Department of Neurosurgery, School of Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands.
Department of Neurology, School of Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands.
Sensors (Basel). 2021 Nov 26;21(23):7876. doi: 10.3390/s21237876.
Motor fluctuations in Parkinson's disease are characterized by unpredictability in the timing and duration of dopaminergic therapeutic benefits on symptoms, including bradykinesia and rigidity. These fluctuations significantly impair the quality of life of many Parkinson's patients. However, current clinical evaluation tools are not designed for the continuous, naturalistic (real-world) symptom monitoring needed to optimize clinical therapy to treat fluctuations. Although commercially available wearable motor monitoring, used over multiple days, can augment neurological decision making, the feasibility of rapid and dynamic detection of motor fluctuations is unclear. So far, applied wearable monitoring algorithms are trained on group data. In this study, we investigated the influence of individual model training on short timescale classification of naturalistic bradykinesia fluctuations in Parkinson's patients using a single-wrist accelerometer. As part of the Parkinson@Home study protocol, 20 Parkinson patients were recorded with bilateral wrist accelerometers for a one hour OFF medication session and a one hour ON medication session during unconstrained activities in their own homes. Kinematic metrics were extracted from the accelerometer data from the bodyside with the largest unilateral bradykinesia fluctuations across medication states. The kinematic accelerometer features were compared over the 1 h duration of recording, and medication-state classification analyses were performed on 1 min segments of data. Then, we analyzed the influence of individual versus group model training, data window length, and total number of training patients included in group model training, on classification. Statistically significant areas under the curves (AUCs) for medication induced bradykinesia fluctuation classification were seen in 85% of the Parkinson patients at the single minute timescale using the group models. Individually trained models performed at the same level as the group trained models (mean AUC both 0.70, standard deviation respectively 0.18 and 0.10) despite the small individual training dataset. AUCs of the group models improved as the length of the feature windows was increased to 300 s, and with additional training patient datasets. We were able to show that medication-induced fluctuations in bradykinesia can be classified using wrist-worn accelerometry at the time scale of a single minute. Rapid, naturalistic Parkinson motor monitoring has the clinical potential to evaluate dynamic symptomatic and therapeutic fluctuations and help tailor treatments on a fast timescale.
帕金森病的运动波动的特征是多巴胺能治疗对症状(包括运动迟缓症和僵硬)的疗效在时间和持续时间上不可预测。这些波动极大地影响了许多帕金森病患者的生活质量。然而,目前的临床评估工具并不是为优化临床治疗以治疗波动而设计的,这些工具不能持续、自然地(在现实世界中)监测症状。尽管商业上可获得的可穿戴式运动监测器可在多天内使用,从而增强神经决策,但快速动态检测运动波动的可行性尚不清楚。到目前为止,应用的可穿戴式监测算法是基于群体数据进行训练的。在这项研究中,我们使用单个腕部加速度计,研究了个体模型训练对帕金森病患者自然发生的运动迟缓波动的短时间尺度分类的影响。作为 Parkinson@Home 研究方案的一部分,20 名帕金森病患者在不受约束的家庭活动中佩戴双侧腕部加速度计进行了 1 小时停药期和 1 小时服药期的记录。从药物状态下身体一侧出现最大单侧运动迟缓波动的加速度计数据中提取运动学指标。在 1 小时的记录期间比较了运动学加速度计特征,并对 1 分钟的数据段进行了药物状态分类分析。然后,我们分析了个体与群体模型训练、数据窗口长度以及包括在群体模型训练中的训练患者总数对分类的影响。使用群体模型,在 1 分钟的时间尺度上,85%的帕金森病患者的药物诱导的运动迟缓波动分类的曲线下面积(AUC)具有统计学意义。尽管个体训练数据集较小,但个体训练模型的表现与群体训练模型一样(平均 AUC 分别为 0.70,标准差分别为 0.18 和 0.10)。随着特征窗口长度增加到 300 秒,以及增加了训练患者数据集,群体模型的 AUC 得到了改善。我们能够表明,使用腕部佩戴的加速度计可以在 1 分钟的时间尺度上对药物引起的运动迟缓波动进行分类。快速、自然的帕金森运动监测具有评估动态症状和治疗波动的临床潜力,并有助于快速调整治疗方案。
J Neural Transm (Vienna). 2019-5-22
Sensors (Basel). 2022-11-24
IEEE Int Conf Rehabil Robot. 2017-7
J Med Internet Res. 2020-10-9
NPJ Parkinsons Dis. 2025-5-22
Sensors (Basel). 2025-1-5
NPJ Parkinsons Dis. 2024-6-25
Bioengineering (Basel). 2024-4-29
Trends Cogn Sci. 2024-4
Sensors (Basel). 2023-9-13
Parkinsonism Relat Disord. 2021-8
Curr Opin Neurol. 2021-8-1
Lancet. 2021-6-12
Biomed Eng Online. 2021-3-31