Suppr超能文献

脑部疾病认知神经科学的协同转向。

A synergetic turn in cognitive neuroscience of brain diseases.

作者信息

Ibanez Agustin, Kringelbach Morten L, Deco Gustavo

机构信息

Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile; Global Brain Health Institute (GBHI), University California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Department of Psychiatry, University of Oxford, Oxford, UK.

Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.

出版信息

Trends Cogn Sci. 2024 Apr;28(4):319-338. doi: 10.1016/j.tics.2023.12.006. Epub 2024 Jan 20.

Abstract

Despite significant improvements in our understanding of brain diseases, many barriers remain. Cognitive neuroscience faces four major challenges: complex structure-function associations; disease phenotype heterogeneity; the lack of transdiagnostic models; and oversimplified cognitive approaches restricted to the laboratory. Here, we propose a synergetics framework that can help to perform the necessary dimensionality reduction of complex interactions between the brain, body, and environment. The key solutions include low-dimensional spatiotemporal hierarchies for brain-structure associations, whole-brain modeling to handle phenotype diversity, model integration of shared transdiagnostic pathophysiological pathways, and naturalistic frameworks balancing experimental control and ecological validity. Creating whole-brain models with reduced manifolds combined with ecological measures can improve our understanding of brain disease and help identify novel interventions. Synergetics provides an integrated framework for future progress in clinical and cognitive neuroscience, pushing the boundaries of brain health and disease toward more mature, naturalistic approaches.

摘要

尽管我们对脑部疾病的理解有了显著进步,但仍存在许多障碍。认知神经科学面临四大主要挑战:复杂的结构-功能关联;疾病表型异质性;缺乏跨诊断模型;以及局限于实验室的过于简化的认知方法。在此,我们提出一个协同学框架,它有助于对大脑、身体和环境之间复杂相互作用进行必要的降维处理。关键解决方案包括用于脑结构关联的低维时空层次结构、处理表型多样性的全脑建模、共享跨诊断病理生理途径的模型整合,以及平衡实验控制和生态效度的自然主义框架。创建具有简化流形并结合生态测量的全脑模型,可以增进我们对脑部疾病的理解,并有助于识别新的干预措施。协同学为临床和认知神经科学的未来进展提供了一个综合框架,将脑部健康和疾病的边界推向更成熟、自然主义的方法。

相似文献

1
A synergetic turn in cognitive neuroscience of brain diseases.
Trends Cogn Sci. 2024 Apr;28(4):319-338. doi: 10.1016/j.tics.2023.12.006. Epub 2024 Jan 20.
3
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.
IEEE J Transl Eng Health Med. 2025 Apr 10;13:158-173. doi: 10.1109/JTEHM.2025.3559693. eCollection 2025.
4
Differently different?: A commentary on the emerging social cognitive neuroscience of female autism.
Biol Sex Differ. 2024 Jun 13;15(1):49. doi: 10.1186/s13293-024-00621-3.
8
Group-to-individual generalizability and individual-level inferences in cognitive neuroscience.
Neurosci Biobehav Rev. 2025 Feb;169:106024. doi: 10.1016/j.neubiorev.2025.106024. Epub 2025 Jan 30.

引用本文的文献

1
Resilience and brain health in global populations.
Nat Med. 2025 Jul 29. doi: 10.1038/s41591-025-03846-w.
3
Reduced Complexity of Pulse Rate Is Associated With Faster Cognitive Decline in Older Adults.
J Am Heart Assoc. 2025 May 20;14(10):e041448. doi: 10.1161/JAHA.125.041448. Epub 2025 May 7.
6
Electroencephalography (EEG) and the Quest for an Inclusive and Global Neuroscience.
Eur J Neurosci. 2025 Mar;61(6):e70078. doi: 10.1111/ejn.70078.
7
Inspired by struggle: A personal journey to global precision brain health.
iScience. 2025 Feb 11;28(2):111918. doi: 10.1016/j.isci.2025.111918. eCollection 2025 Feb 21.
8
Altered spatiotemporal brain dynamics of interoception in behavioural-variant frontotemporal dementia.
EBioMedicine. 2025 Mar;113:105614. doi: 10.1016/j.ebiom.2025.105614. Epub 2025 Feb 22.
9
Linking the microarchitecture of neurotransmitter systems to large-scale MEG resting state networks.
iScience. 2024 Oct 9;27(11):111111. doi: 10.1016/j.isci.2024.111111. eCollection 2024 Nov 15.
10
Neuroimaging Meta-Analyses Reveal Convergence of Interoception, Emotion, and Social Cognition Across Neurodegenerative Diseases.
Biol Psychiatry. 2025 Jun 1;97(11):1079-1090. doi: 10.1016/j.biopsych.2024.10.013. Epub 2024 Oct 21.

本文引用的文献

1
Ecological brain: reframing the study of human behaviour and cognition.
R Soc Open Sci. 2024 Nov 8;11(11):240762. doi: 10.1098/rsos.240762. eCollection 2024 Nov.
2
Addressing the gaps between socioeconomic disparities and biological models of dementia.
Brain. 2023 Sep 1;146(9):3561-3564. doi: 10.1093/brain/awad236.
3
Time to synergize mental health with brain health.
Nat Ment Health. 2023 Jul;1(7):441-443. doi: 10.1038/s44220-023-00086-0. Epub 2023 Jul 10.
5
Intrinsic timescales and predictive allostatic interoception in brain health and disease.
Neurosci Biobehav Rev. 2024 Feb;157:105510. doi: 10.1016/j.neubiorev.2023.105510. Epub 2023 Dec 15.
6
Global South research is critical for understanding brain health, ageing and dementia.
Clin Transl Med. 2023 Nov;13(11):e1486. doi: 10.1002/ctm2.1486.
8
Factors associated with healthy aging in Latin American populations.
Nat Med. 2023 Sep;29(9):2248-2258. doi: 10.1038/s41591-023-02495-1. Epub 2023 Aug 10.
9
Beyond simple laboratory studies: Developing sophisticated models to study rich behavior.
Phys Life Rev. 2023 Sep;46:220-244. doi: 10.1016/j.plrev.2023.07.006. Epub 2023 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验