Zhang Zhongming, Aspinall Michael D
Engineering Department, Lancaster University, Lancaster LA1 4YW, UK.
Sensors (Basel). 2021 Nov 27;21(23):7930. doi: 10.3390/s21237930.
Third-generation semiconductor materials have a wide band gap, high thermal conductivity, high chemical stability and strong radiation resistance. These materials have broad application prospects in optoelectronics, high-temperature and high-power equipment and radiation detectors. In this work, thin-film solid state neutron detectors made of four third-generation semiconductor materials are studied. Geant4 10.7 was used to analyze and optimize detectors. The optimal thicknesses required to achieve the highest detection efficiency for the four materials are studied. The optimized materials include diamond, silicon carbide (SiC), gallium oxide (Ga2O3) and gallium nitride (GaN), and the converter layer materials are boron carbide (B4C) and lithium fluoride (LiF) with a natural enrichment of boron and lithium. With optimal thickness, the primary knock-on atom (PKA) energy spectrum and displacements per atom (DPA) are studied to provide an indication of the radiation hardness of the four materials. The gamma rejection capabilities and electron collection efficiency (ECE) of these materials have also been studied. This work will contribute to manufacturing radiation-resistant, high-temperature-resistant and fast response neutron detectors. It will facilitate reactor monitoring, high-energy physics experiments and nuclear fusion research.
第三代半导体材料具有宽带隙、高导热性、高化学稳定性和强抗辐射性。这些材料在光电子学、高温和高功率设备以及辐射探测器方面具有广阔的应用前景。在这项工作中,研究了由四种第三代半导体材料制成的薄膜固态中子探测器。使用Geant4 10.7对探测器进行分析和优化。研究了四种材料实现最高探测效率所需的最佳厚度。优化后的材料包括金刚石、碳化硅(SiC)、氧化镓(Ga2O3)和氮化镓(GaN),转换层材料是天然富集硼和锂的碳化硼(B4C)和氟化锂(LiF)。在最佳厚度下,研究了初级撞出原子(PKA)能谱和原子位移数(DPA),以表明这四种材料的抗辐射能力。还研究了这些材料的γ射线抑制能力和电子收集效率(ECE)。这项工作将有助于制造抗辐射、耐高温和快速响应的中子探测器。它将促进反应堆监测、高能物理实验和核聚变研究。