Shi Ya-Ting, Ren Fang-Fang, Xu Wei-Zong, Chen Xuanhu, Ye Jiandong, Li Li, Zhou Dong, Zhang Rong, Zheng Youdou, Tan Hark Hoe, Jagadish Chennupati, Lu Hai
School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
Sci Rep. 2019 Jun 19;9(1):8796. doi: 10.1038/s41598-019-45177-0.
Implementing selective-area p-type doping through ion implantation is the most attractive choice for the fabrication of GaN-based bipolar power and related devices. However, the low activation efficiency of magnesium (Mg) ions and the inevitable surface decomposition during high-temperature activation annealing process still limit the use of this technology for GaN-based devices. In this work, we demonstrate successful p-type doping of GaN using protective coatings during a Mg ion implantation and thermal activation process. The p-type conduction of GaN is evidenced by the positive Seebeck coefficient obtained during thermopower characterization. On this basis, a GaN p-i-n diode is fabricated, exhibiting distinct rectifying characteristics with a turn-on voltage of 3 V with an acceptable reverse breakdown voltage of 300 V. Electron beam induced current (EBIC) and electroluminescent (EL) results further confirm the formation of p-type region due to Mg ion implantation and subsequent thermal activation. This repeatable and uniform manufacturing process can be implemented in mass production of GaN devices for versatile power and optoelectronic applications.
通过离子注入实现选择性区域p型掺杂是制造基于氮化镓(GaN)的双极功率器件及相关器件最具吸引力的选择。然而,镁(Mg)离子的低激活效率以及高温激活退火过程中不可避免的表面分解,仍然限制了该技术在基于GaN的器件中的应用。在这项工作中,我们展示了在Mg离子注入和热激活过程中使用保护涂层成功实现GaN的p型掺杂。通过热功率表征获得的正塞贝克系数证明了GaN的p型传导。在此基础上,制备了一个GaN p-i-n二极管,其具有明显的整流特性,开启电压为3 V,反向击穿电压为300 V,可接受。电子束诱导电流(EBIC)和电致发光(EL)结果进一步证实了由于Mg离子注入和随后的热激活而形成的p型区域。这种可重复且均匀的制造工艺可用于GaN器件的大规模生产,以实现多种功率和光电子应用。