School of Computer Science and Engineering, University of Westminster, London W1W 6UW, UK.
Department of Radiology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA.
Sensors (Basel). 2021 Nov 28;21(23):7942. doi: 10.3390/s21237942.
There is a growing demand for fast, accurate computation of clinical markers to improve renal function and anatomy assessment with a single study. However, conventional techniques have limitations leading to overestimations of kidney function or failure to provide sufficient spatial resolution to target the disease location. In contrast, the computer-aided analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) could generate significant markers, including the glomerular filtration rate (GFR) and time-intensity curves of the cortex and medulla for determining obstruction in the urinary tract. This paper presents a dual-stage fully modular framework for automatic renal compartment segmentation in 4D DCE-MRI volumes. (1) Memory-efficient 3D deep learning is integrated to localise each kidney by harnessing residual convolutional neural networks for improved convergence; segmentation is performed by efficiently learning spatial-temporal information coupled with boundary-preserving fully convolutional dense nets. (2) Renal contextual information is enhanced via non-linear transformation to segment the cortex and medulla. The proposed framework is evaluated on a paediatric dataset containing 60 4D DCE-MRI volumes exhibiting varying conditions affecting kidney function. Our technique outperforms a state-of-the-art approach based on a GrabCut and support vector machine classifier in mean dice similarity (DSC) by 3.8% and demonstrates higher statistical stability with lower standard deviation by 12.4% and 15.7% for cortex and medulla segmentation, respectively.
人们越来越需要快速、准确地计算临床标志物,以便在一次研究中改善肾功能和解剖评估。然而,传统技术存在局限性,导致肾功能高估或无法提供足够的空间分辨率以确定疾病位置。相比之下,动态对比增强(DCE)磁共振成像(MRI)的计算机辅助分析可以生成重要的标志物,包括肾小球滤过率(GFR)和皮质和髓质的时间-强度曲线,以确定尿路梗阻。本文提出了一种用于 4D DCE-MRI 容积的自动肾脏分室分割的两级完全模块化框架。(1)通过利用残差卷积神经网络对每个肾脏进行定位,集成了内存高效的 3D 深度学习,以提高收敛性;通过高效地学习时空信息并结合边界保持的全卷积密集网络来进行分割。(2)通过非线性变换增强肾脏上下文信息以分割皮质和髓质。在包含 60 个 4D DCE-MRI 容积的儿科数据集上评估了所提出的框架,这些数据集表现出影响肾功能的各种条件。我们的技术在平均骰子相似性(DSC)方面优于基于 GrabCut 和支持向量机分类器的最先进方法,分别提高了 3.8%,并且在皮质和髓质分割方面具有更高的统计稳定性,标准偏差分别降低了 12.4%和 15.7%。