基于锐化空间注意力的轻量级 YOLO 模型的一种时空锐化注意力机制。
One Spatio-Temporal Sharpening Attention Mechanism for Light-Weight YOLO Models Based on Sharpening Spatial Attention.
机构信息
School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
HDU-ITMO Joint Institute, Hangzhou Dianzi University, Hangzhou 310018, China.
出版信息
Sensors (Basel). 2021 Nov 28;21(23):7949. doi: 10.3390/s21237949.
Attention mechanisms have demonstrated great potential in improving the performance of deep convolutional neural networks (CNNs). However, many existing methods dedicate to developing channel or spatial attention modules for CNNs with lots of parameters, and complex attention modules inevitably affect the performance of CNNs. During our experiments of embedding Convolutional Block Attention Module (CBAM) in light-weight model YOLOv5s, CBAM does influence the speed and increase model complexity while reduce the average precision, but Squeeze-and-Excitation (SE) has a positive impact in the model as part of CBAM. To replace the spatial attention module in CBAM and offer a suitable scheme of channel and spatial attention modules, this paper proposes one Spatio-temporal Sharpening Attention Mechanism (SSAM), which sequentially infers intermediate maps along channel attention module and Sharpening Spatial Attention (SSA) module. By introducing sharpening filter in spatial attention module, we propose SSA module with low complexity. We try to find a scheme to combine our SSA module with SE module or Efficient Channel Attention (ECA) module and show best improvement in models such as YOLOv5s and YOLOv3-tiny. Therefore, we perform various replacement experiments and offer one best scheme that is to embed channel attention modules in backbone and neck of the model and integrate SSAM into YOLO head. We verify the positive effect of our SSAM on two general object detection datasets VOC2012 and MS COCO2017. One for obtaining a suitable scheme and the other for proving the versatility of our method in complex scenes. Experimental results on the two datasets show obvious promotion in terms of average precision and detection performance, which demonstrates the usefulness of our SSAM in light-weight YOLO models. Furthermore, visualization results also show the advantage of enhancing positioning ability with our SSAM.
注意力机制在提高深度卷积神经网络 (CNN) 的性能方面显示出了巨大的潜力。然而,许多现有的方法致力于为具有大量参数的 CNN 开发通道或空间注意力模块,而复杂的注意力模块不可避免地会影响 CNN 的性能。在我们将卷积块注意力模块 (CBAM) 嵌入轻量级模型 YOLOv5s 的实验中,CBAM 确实会影响速度并增加模型的复杂性,同时降低平均精度,但作为 CBAM 的一部分,挤压激励 (SE) 对模型有积极的影响。为了替代 CBAM 中的空间注意力模块,并提供一种合适的通道和空间注意力模块方案,本文提出了一种时空锐化注意力机制 (SSAM),它沿着通道注意力模块和锐化空间注意力 (SSA) 模块依次推断中间图。通过在空间注意力模块中引入锐化滤波器,我们提出了具有低复杂度的 SSA 模块。我们尝试找到一种将我们的 SSA 模块与 SE 模块或高效通道注意力 (ECA) 模块相结合的方案,并在 YOLOv5s 和 YOLOv3-tiny 等模型中取得最佳改进。因此,我们进行了各种替换实验,并提供了一种最佳方案,即将通道注意力模块嵌入模型的骨干和颈部,并将 SSAM 集成到 YOLO 头部。我们在两个通用目标检测数据集 VOC2012 和 MS COCO2017 上验证了我们的 SSAM 的积极效果。一个用于获得合适的方案,另一个用于证明我们的方法在复杂场景中的通用性。在这两个数据集上的实验结果表明,在平均精度和检测性能方面都有明显的提升,这证明了我们的 SSAM 在轻量级 YOLO 模型中的有用性。此外,可视化结果还显示了我们的 SSAM 增强定位能力的优势。