Institute of Molecular Genetics, Agricultural University of Georgia, #240 D. Aghmashenebeli Av, Tbilisi 0131, Georgia.
Graduate School of Agricultural Science, Kobe University, Rokko, Nada, Kobe 657-8501, Japan.
Int J Mol Sci. 2021 Nov 24;22(23):12723. doi: 10.3390/ijms222312723.
The aim of the presented study is a genetic characterization of the hexaploid wheat L. Two approaches were used for the genealogical study of hexaploid wheats-the complete sequencing of chloroplast DNA and PCR-based haplotype analysis of the fourth intron of and of the fifth-to-sixth-exon region of The complete chloroplast DNA sequences of 13 hexaploid wheat samples were determined: Free-threshing- subsp. , one sample; subsp. , two samples; subsp. , one sample; subsp. four samples. Hulled- subsp. , three samples; subsp. jakubz two samples. The comparative analysis of complete cpDNA sequences of 20 hexaploid wheat samples (13 samples in this article plus 7 samples sequenced in this laboratory in 2018) was carried out. PCR-based haplotype analysis of the fourth intron of and of the fifth-to-sixth exon region of of all 20 hexaploid wheat samples was carried out. The 20 hexaploid wheat samples (13 samples in this article plus 7 samples in 2018) can be divided into two groups- subsp. three samples and subsp. collected in Armenia, and the remaining 16 samples, including subsp. collected in Europe (Sweden). If we take the cpDNA of Chinese Spring as a reference, 25 SNPs can be identified. Furthermore, 13-14 SNPs can be identified in subsp. and subsp. (Vav1). In the other samples up to 11 SNPs were detected. 22 SNPs are found in the intergenic regions, 2 found in introns, and 10 SNPs were found in the genes, of which seven are synonymous. PCR-based haplotype analysis of the fourth intron of and the fifth-to-sixth-exon region of provides an opportunity to make an assumption that hexaploid wheats subsp. var. and var. differ from other macha samples by the absence of a 42 bp insertion in the fourth intron of . One possible explanation for this observation would be that two Coss. (A) and (B) participated in the formation of hexaploids through the D genome: (A)-macha (1-5, 7, 8, 10-12), and (B)-macha M6, M9, subsp. cv. 'Chinese Spring' and cv. 'Red Doly'.
本研究的目的是对六倍体小麦 L.进行遗传特征分析。为了对六倍体小麦进行系统发育研究,我们采用了两种方法——叶绿体 DNA 全序列测序和第四内含子 PCR 分析和第五到第六外显子区域的 PCR 分析。我们确定了 13 个六倍体小麦样本的完整叶绿体 DNA 序列:自由脱粒亚种,1 个样本;硬粒亚种,2 个样本;波兰亚种,1 个样本;普通小麦亚种,4 个样本。皮壳亚种,3 个样本;密穗亚种,2 个样本。我们对 20 个六倍体小麦样本(本文中的 13 个样本加上 2018 年本实验室测序的 7 个样本)的完整 cpDNA 序列进行了比较分析。对所有 20 个六倍体小麦样本的第四内含子 PCR 分析和第五到第六外显子区域的 PCR 分析。这 20 个六倍体小麦样本(本文中的 13 个样本加上 2018 年的 7 个样本)可以分为两组——亚组。收集于亚美尼亚的 3 个样本和收集于亚美尼亚的 3 个样本,其余 16 个样本,包括欧洲(瑞典)收集的亚组。如果我们以中国春的 cpDNA 为参考,可以鉴定出 25 个 SNP。此外,还可以在亚组和亚组中鉴定出 13-14 个 SNP(Vav1)。在其他样本中,检测到多达 11 个 SNP。在基因间区发现了 22 个 SNP,在内含子中发现了 2 个 SNP,在基因中发现了 10 个 SNP,其中 7 个是同义的。第四内含子 PCR 分析和第五到第六外显子区域的 PCR 分析提供了一种假设,即六倍体小麦亚种。硬粒亚种 var. 和 var. 与其他 macha 样本不同,第四内含子中不存在 42 bp 的插入。这种观察结果的一种可能解释是,两个 Coss.(A)和(B)通过 D 基因组参与了六倍体的形成:(A)-macha(1-5、7、8、10-12),和(B)-macha M6、M9、普通小麦亚种 cv。‘中国春’和 cv。‘红多利’。