Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
Int J Mol Sci. 2021 Nov 25;22(23):12730. doi: 10.3390/ijms222312730.
COPD, a chronic obstructive pulmonary disease, is one of the leading causes of death worldwide. Clinical studies and research in rodent models demonstrated that failure of repair mechanisms to cope with increased ROS and inflammation in the lung leads to COPD. Despite this progress, the molecular mechanisms underlying the development of COPD remain poorly understood, resulting in a lack of effective treatments. Thus, an informative, simple model is highly valued and desired. Recently, the cigarette smoke-induced COPD model showed a complex set of pathological phenotypes that resemble those seen in human COPD patients. The trachea has been used as a premier model to reveal the mechanisms of tube morphogenesis. The association of these mechanisms to structural changes in COPD can be analyzed by using trachea. Additionally, the timeline of structural damage, ROS, and inflammation can be studied in live organisms using fluorescently-tagged proteins. The related function of human COPD genes identified by GWAS can be screened using respective fly homologs. Finally, the trachea can be used as a high-throughput drug screening platform to identify novel treatments for COPD. Therefore, trachea is an excellent model that is complementary to rodent COPD models.
COPD,即慢性阻塞性肺疾病,是全球主要致死原因之一。临床研究和啮齿动物模型研究表明,肺部内活性氧(ROS)和炎症增加时,修复机制的失效会导致 COPD。尽管取得了这些进展,但 COPD 发展的分子机制仍知之甚少,导致缺乏有效的治疗方法。因此,人们非常需要一种信息丰富且简单的模型。最近,香烟烟雾诱导的 COPD 模型显示出一组复杂的病理表型,类似于人类 COPD 患者的表型。气管已被用作揭示管腔形态发生机制的主要模型。可以通过气管分析这些机制与 COPD 中结构变化的关联。此外,还可以使用荧光标记蛋白在活体生物中研究结构损伤、ROS 和炎症的时间进程。可以使用各自的果蝇同源物筛选通过全基因组关联研究(GWAS)鉴定的人类 COPD 基因的相关功能。最后,气管可以用作高通量药物筛选平台,以确定 COPD 的新治疗方法。因此,气管是一种与啮齿动物 COPD 模型互补的优秀模型。